Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-15T22:02:16.995Z Has data issue: false hasContentIssue false

Values of the Dedekind Eta Function at Quadratic Irrationalities

Published online by Cambridge University Press:  20 November 2018

Alfred van der Poorten
Affiliation:
Centre for Number Theory Research, School of Mathematics, Physics, Computing and Electronics, Macquarie University, Sydney, NSW, Australia 2109 email: alf@mpce.mq.edu.au
Kenneth S. Williams
Affiliation:
Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, K1S 5B6 email: williams@math.carleton.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $d$ be the discriminant of an imaginary quadratic field. Let $a$, $b$, $c$ be integers such that

$${{b}^{2}}-4ac=d,a>0,\gcd (a,b,c)=1.$$
.

The value of $\left| \eta ((b+\sqrt{d})/\left. 2a) \right| \right.$ is determined explicitly, where $\eta \left( z \right)$ is Dedekind’s eta function

$$\eta (z)\,=\,{{e}^{\pi iz/12}}\,\prod\limits_{m=1}^{\infty }{(1-{{e}^{2\pi imz}})\,\,\,(im(z)>0).}$$

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1999

References

[1] Cohn, H., Advanced Number Theory. Dover Publications, Inc., New York, 1980.Google Scholar
[2] Cox, D. A., Primes of the Form x2 + y2. John Wiley and Sons, New York, 1989.Google Scholar
[3] Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products. Fifth Edition, Academic Press, 1994.Google Scholar
[4] Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers. Oxford, 1960.Google Scholar
[5] Huard, J. G., Kaplan, P. and Williams, K. S., The Chowla-Selberg formula for genera. Acta Arith. 73 (1995), 271301.Google Scholar
[6] Kaplan, P. and Williams, K. S., On a formula of Dirichlet. Far East J. Math. Sci. 5 (1997), 153157.Google Scholar
[7] Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers. Springer-Verlag, New York, 1990.Google Scholar
[8] Selberg, A. and Chowla, S., On Epstein's zeta-function. J. Reine Angew. Math. 227 (1967), 86110.Google Scholar
[9] Siegel, C. L., Advanced Analytic Number Theory. Tata Institute of Fundamental Research, Bombay, 1980.Google Scholar
[10] Williams, K. S. and Zhang, N.-Y., The Chowla-Selberg relation for genera. Preprint, 1993.Google Scholar