Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-2z7pd Total loading time: 0.388 Render date: 2021-05-09T21:01:37.314Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Spectral Asymptotics of Laplacians Associated with One-dimensional Iterated Function Systems with Overlaps

Published online by Cambridge University Press:  20 November 2018

Sze-Man Ngai
Affiliation:
College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, China and Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460-8093, U.S.A. email: smngai@georgiasouthern.edu
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

We set up a framework for computing the spectral dimension of a class of one-dimensional self-similar measures that are defined by iterated function systems with overlaps and satisfy a family of second-order self-similar identities. As applications of our result we obtain the spectral dimension of important measures such as the infinite Bernoulli convolution associated with the golden ratio and convolutions of Cantor-type measures. The main novelty of our result is that the iterated function systems we consider are not post-critically finite and do not satisfy the well-known open set condition.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[BNT] Bird, E. J., Ngai, S.-M., and Teplyaev, A., Fractal Laplacians on the unit interval. Ann. Sci. Math. Québec 27(2003), no. 2, 135168.Google Scholar
[D] Davies, E. B., Spectral theory and differential operators. Cambridge Studies in Advanced Mathematics, 42, Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[DL] Deng, Q.-R. and Lau, K.-S., Open set condition and post-critically finite self-similar sets. Nonlinearity 21(2008), no. 6, 12271232. doi:10.1088/0951-7715/21/6/004 Google Scholar
[E] Erdʺos, P., On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61(1939), 974976. doi:10.2307/2371641 Google Scholar
[F1] Falconer, K., Fractal geometry. Mathematical foundations and applications. John Wiley & Sons, Ltd., Chichester, 1990.Google Scholar
[F2] Falconer, K., Techniques in fractal geometry. John Wiley & Sons, Ltd., Chichester, 1997.Google Scholar
[FLN] Fan, A.-H., Lau, K.-S., and Ngai, S.-M., Iterated function systems with overlaps. Asian J. Math. 4(2000), no. 3, 527552.Google Scholar
[Fe] Feng, D.-J., The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers. Adv. Math. 195(2005), no. 1, 24101.Google Scholar
[FL W] Feng, D.-J., Lau, K.-S., and Wang, X.-Y., Some exceptional phenomena in multifractal formalism. II. Asian J. Math. 9(2005), no. 4, 473488.Google Scholar
[FO] Feng, D.-J. and Olivier, E., Multifractal analysis of weak Gibbs measures and phase transition—application to some Bernoulli convolutions. Ergodic Theory Dynam. Systems 23(2003), no. 6, 17511784.Google Scholar
[HLN] Hu, J., Lau, K.-S., and Ngai, S.-M., Laplace operators related to self-similar measures on Rd. J. Funct. Anal. 239(2006), no. 2, 542565. doi:10.1016/j.jfa.2006.07.005 Google Scholar
[H] Hutchinson, J. E., Fractals and self-similarity. Indiana Univ. Math. J. 30(1981), no. 5, 713747. doi:10.1512/iumj.1981.30.30055 Google Scholar
[JY] Jin, N. and Yau, S. S. T., General finite type IFS and M-matrix. Comm. Anal. Geom. 13(2005), no. 4, 821843.Google Scholar
[K] Kigami, J., Analysis on fractals. Cambridge Tracts in Mathematics, 143, Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
[KL] Kigami, J. and Lapidus, M. L., Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 158(1993), no. 1, 93125. doi:10.1007/BF02097233 Google Scholar
[L] Lapidus, M. L., Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans. Amer. Math. Soc. 325(1991), no. 2, 465529. doi:10.2307/2001638 Google Scholar
[LP] Lapidus, M. L. and Pomerance, C., The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. London Math. Soc. (3) 66(1993), no. 1, 4169. doi:10.1112/plms/s3-66.1.41 Google Scholar
[La1] K.-S., Lau Fractal measures and mean p-variations. J. Funct. Anal. 108(1992), no. 2, 427457. doi:10.1016/0022-1236(92)90031-D Google Scholar
[La2] K.-S., Lau, Dimension of a family of singular Bernoulli convolutions. J. Funct. Anal. 116(1993), no. 2, 335358. doi:10.1006/jfan.1993.1116 Google Scholar
[LN1] K.-S., Lau and Ngai, S.-M., Lq-spectrum of the Bernoulli convolution associated with the golden ratio. Studia Math. 131(1998), no. 3, 225251.Google Scholar
[LN2] K.-S., Lau and Ngai, S.-M., Multifractal measures and a weak separation condition. Adv. Math. 141(1999), no. 1, 4596. doi:10.1006/aima.1998.1773 Google Scholar
[LN3] K.-S., Lau and Ngai, S.-M., Second-order self-similar identities and multifractal decompositions. Indiana Univ. Math. J. 49(2000), no. 3, 925972.Google Scholar
[LN4] K.-S., Lau and Ngai, S.-M., A generalized finite type condition for iterated function systems. Adv. Math 208(2007), no. 2, 647671. doi:10.1016/j.aim.2006.03.007 Google Scholar
[L WC] K.-S., Lau Wang, J., and C.-H., Chu Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures. Studia Math. 117(1995), no. 1, 128.Google Scholar
[L W] Lau, K.-S. and Wang, X.-Y., Some exceptional phenomena in multifractal formalism. I. Asian J. Math. 9(2005), no. 2, 275294.Google Scholar
[Mi] Minc, H., Nonnegative matrices. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988.Google Scholar
[NS1] Naimark, K. and Solomyak, M., On the eigenvalue behaviour for a class of operators related to self-similar measures on Rd. C. R. Acad. Sci. Paris Sér. I Math. 319(1994), no. 8, 837842.Google Scholar
[NS2] Naimark, K. and Solomyak, M., The eigenvalue behaviour for the boundary value problems related to self-similar measures on Rd. Math. Res. Lett. 2(1995), no. 3, 279298.Google Scholar
[N W] Ngai, S.-M. and Wang, Y., Hausdorff dimension of self-similar sets with overlaps. J. London Math. Soc. (2) 63(2001), no. 3, 655672. doi:10.1017/S0024610701001946 Google Scholar
[PS1] Peres, Y. and Solomyak, B., Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3(1996), no. 2, 231239.Google Scholar
[PSS] Peres, Y., Schlag, W., and Solomyak, B., Sixty years of Bernoulli convolutions. In: Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), Progr. Probab., 46, Birkhäuser, Basel, 2000, pp. 3965.Google Scholar
[So] Solomyak, B., On the random seriesP±,n (an Erdʺos problem). Ann. of Math. (2) 142(1995), no. 3, 611625. doi:10.2307/2118556 Google Scholar
[SV] Solomyak, M. and Verbitsky, E., On a spectral problem related to self-similar measures. Bull. London Math. Soc. 27(1995), no. 3, 242248. doi:10.1112/blms/27.3.242 Google Scholar
[S] Strichartz, R. S., Differential equations on fractals. A tutorial. Princeton University Press, Princeton, NJ, 2006.CrossRefGoogle Scholar
[STZ] Strichartz, R. S., Taylor, A., and Zhang, T., Densities of self-similar measures on the line. Experiment. Math. 4(1995), no. 2, 101128.Google Scholar
[W] Weyl, H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(1912), no. 4, 441479. doi:10.1007/BF01456804 Google Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spectral Asymptotics of Laplacians Associated with One-dimensional Iterated Function Systems with Overlaps
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spectral Asymptotics of Laplacians Associated with One-dimensional Iterated Function Systems with Overlaps
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spectral Asymptotics of Laplacians Associated with One-dimensional Iterated Function Systems with Overlaps
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *