Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T12:56:59.141Z Has data issue: false hasContentIssue false

On the period of Li, Pertusi, and Zhao’s symplectic variety

Published online by Cambridge University Press:  04 August 2023

Franco Giovenzana
Affiliation:
Fakultät für Mathematik, Technische Universität Chemnitz, Reichenhainer Straße 39, 09126 Chemnitz, Germany e-mail: franco.giovenzana@math.tu-chemnitz.de
Luca Giovenzana
Affiliation:
Mathematical Sciences, Loughborough University, Schofield Building, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK e-mail: L.Giovenzana@lboro.ac.uk Current address: Fakultät für Mathematik, Technische Universität Chemnitz, Reichenhainer Straße 39, 09126 Chemnitz, Germany e-mail: luca.giovenzana@math.tu-chemnitz.de
Claudio Onorati*
Affiliation:
Dipartimento di Matematica, Università di Roma Tor Vergata, via della ricerca scientifica 1, 00133 Rome, Italy

Abstract

We extend classical results of Perego and Rapagnetta on moduli spaces of sheaves of type OG10 to moduli spaces of Bridgeland semistable objects on the Kuznetsov component of a cubic fourfold. In particular, we determine the period of this class of varieties and use it to understand when they become birational to moduli spaces of sheaves on a K3 surface.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

F.G. was supported by the DFG through the research grant Le 3093/3-2. L.G. was supported by Engineering and Physical Sciences Research Council (EPSRC) New Investigator Award EP/V005545/1 “Mirror Symmetry for Fibrations and Degenerations.” For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising. C.O. was supported by the PRIN grant CUP E84I19000500006.

References

Addington, N., On two rationality conjectures for cubic fourfolds . Math. Res. Lett. 23(2016), 113. https://doi.org/10.4310/mrl.2016.v23.n1.a1 CrossRefGoogle Scholar
Addington, N. and Giovenzana, F., On the period of Lehn, Lehn, Sorger, and van Straten’s symplectic eightfold . Kyoto J. Math. 63(2023), no. 1, 7186. https://doi.org/10.1215/21562261-2022-0033 CrossRefGoogle Scholar
Addington, N. and Thomas, R., Hodge theory and derived categories of cubic fourfolds . Duke Math. J. 163(2014), no. 10, 18851927. https://doi.org/10.1215/00127094-2738639 CrossRefGoogle Scholar
Bakker, B. and Lehn, C., A global Torelli theorem for singular symplectic varieties . J. Eur. Math. Soc. 23(2021), 949994. https://doi.org/10.4171/jems/1026 CrossRefGoogle Scholar
Bakker, B. and Lehn, C., The global moduli theory of symplectic varieties . J. Reine Angew. Math. 2022(2022), no. 790, 223265. https://doi.org/10.1515/crelle-2022-0033 CrossRefGoogle Scholar
Bayer, A., Lahoz, M., Macrì, E., Nuer, H., Perry, A., and Stellari, P., Stability conditions in families . Publ. Math. Inst. Hautes ´Etudes Sci. 133(2021), 157325. https://doi.org/10.1007/s10240-021-00124-6 CrossRefGoogle Scholar
Bayer, A., Lahoz, M., Macrì, E., and Stellari, P., Stability conditions on Kuznetsov components. Ann. Sci. Éc. Norm. Supér. 56(2023), 517570. https://doi.org/10.24033/asens.2539 CrossRefGoogle Scholar
Bayer, A. and Macrì, E., Projectivity and birational geometry of Bridgeland moduli spaces . J. Amer. Math. Soc. 27(2014), no. 3, 707752. https://doi.org/10.1090/s0894-0347-2014-00790-6 CrossRefGoogle Scholar
Bayer, A. and Macrì, E., MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations . Invent. Math. 198(2014), no. 3, 505590. https://doi.org/10.1007/s00222-014-0501-8 CrossRefGoogle Scholar
Beauville, A., Symplectic singularities . Invent. Math. 139(2000), 541549. https://doi.org/10.1007/s002229900043 CrossRefGoogle Scholar
Bridgeland, T., Stability conditions on triangulated categories . Ann. Math. 166(2007), no. 2, 317345. https://doi.org/10.4007/annals.2007.166.317 CrossRefGoogle Scholar
Bridgeland, T., Stability conditions on K3 surfaces . Duke Math. J. 141(2008), no. 2, 241291. https://doi.org/10.1215/s0012-7094-08-14122-5 CrossRefGoogle Scholar
Druel, S., Espace des modules des faisceaux de rang 2 semi-stables de classes de Chern ${c}_1=0$ , ${c}_2=2et\ {c}_3=0$ sur la cubique de ${\mathbb{P}}^4$ . Int. Math. Res. Not. 19(2000), no. 19, 9851004.CrossRefGoogle Scholar
Elkik, R., Rationalité des singularités canoniques . Invent. Math. 64(1981), no. 1, 16. https://doi.org/10.1007/bf01393930 CrossRefGoogle Scholar
Felisetti, C., Giovenzana, F., and Grossi, A., O’Grady tenfolds as moduli spaces of sheaves. Preprint, 2023. arXiv:2303.07017.Google Scholar
Friedman, R. and Morgan, J., Smooth four-manifolds and complex surfaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, 27, Springer, Berlin, 1994. https://doi.org/10.1007/978-3-662-03028-8 CrossRefGoogle Scholar
Hassett, B., Special cubic fourfolds . Compos. Math., 120(2000), no. 1, 123.CrossRefGoogle Scholar
Huybrechts, D., The K3 category of a cubic fourfold . Compos. Math. 153(2017), no. 3, 586620. https://doi.org/10.1112/s0010437x16008137 CrossRefGoogle Scholar
Huybrechts, D., Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories . In: Hochenegger, A., Lehn, M., and Stellari, P. (eds.), Birational geometry of hypersurfaces, Springer, Cham, 2019, pp. 165198. https://doi.org/10.1007/978-3-030-18638-8-5 CrossRefGoogle Scholar
Huybrechts, D. and Stellari, P., Equivalences of twisted K3 surfaces . Math. Ann. 332(2005), 901936. https://doi.org/10.1007/s00208-005-0662-2 CrossRefGoogle Scholar
Kaledin, D., Lehn, M., and Sorger, C., Singular symplectic moduli spaces . Invent. Math. 164(2006), 591614. https://doi.org/10.1007/s00222-005-0484-6 CrossRefGoogle Scholar
Kuznetsov, A., Derived categories of cubic and ${V}_{14}$ threefolds . Proc. V.A.Steklov Inst. Math. 246(2004), 183207.Google Scholar
Kuznetsov, A., Calabi–Yau and fractional Calabi–Yau categories . J. Reine Angew. Math. 753(2019), 239267. https://doi.org/10.1515/crelle-2017-0004 CrossRefGoogle Scholar
Laza, R., Saccà, G., and Voisin, C., A hyper-Kähler compactification of the intermediate Jacobian fibration associated with a cubic 4-fold . Acta Math. 218(2017), no. 1, 55135. https://doi.org/10.4310/acta.2017.v218.n1.a2 CrossRefGoogle Scholar
Lehn, M. and Sorger, C., La singularité de O’Grady . J. Alg. Geom. 15(2006), 756770. https://doi.org/10.1090/s1056-3911-06-00437-1 CrossRefGoogle Scholar
Li, C., Pertusi, L., and Zhao, X., Twisted cubics on cubic fourfolds and stability conditions. Preprint, 2018. arXiv:1802.01134.Google Scholar
Li, C., Pertusi, L., and Zhao, X., Elliptic quintics on cubic fourfolds, O’Grady 10, and Lagrangian fibrations . Adv. Math. 408(2022), 108584. https://doi.org/10.1016/j.aim.2022.108584 CrossRefGoogle Scholar
Li, J., Algebro-geometric interpretation of Donaldson’s polynomial invariants of algebraic surfaces . J. Diff. Geom. 37(1993), 417466. https://doi.org/10.4310/jdg/1214453683 Google Scholar
Lieblich, M., Moduli of twisted sheaves . Duke Math. J. 138(2007), no. 1, 23118. https://doi.org/10.1215/s0012-7094-07-13812-2 CrossRefGoogle Scholar
Meachan, C. and Zhang, Z., Birational geometry of singular moduli spaces of O’Grady type . Adv. Math. 296(2016), 210267. https://doi.org/10.1016/j.aim.2016.02.036 CrossRefGoogle Scholar
Mongardi, G. and Onorati, C., Birational geometry of irreducible holomorphic symplectic tenfolds of O’Grady type . Math. Z. 300(2022), 34973526. https://doi.org/10.1007/s00209-021-02966-6 CrossRefGoogle Scholar
Mukai, S., Symplectic structure on the moduli space of sheaves on an abelian or K3 surface . Invent. Math. 77(1984), 101116. https://doi.org/10.1007/bf01389137 CrossRefGoogle Scholar
Nikulin, V. V., Integral symmetric bilinear forms and some of their applications . Izv. Akad. Nauk SSSR Ser. Mat. 43(1979), no. 1, 111177. English translation in: Math. USSR Izv. 14(1980), no. 1. https://doi.org/10.1070/im1980v014n01abeh001060 Google Scholar
O’Grady, K. G., Desingularized moduli spaces of sheaves on a K3 surface . J. Reine Angew. Math. 512(1999), 49117. https://doi.org/10.1515/crll.1999.056 CrossRefGoogle Scholar
Onorati, C., Irreducible holomorphic symplectic manifolds and monodromy operators. Ph.D. thesis, University of Bath, 2018.Google Scholar
Onorati, C., On the monodromy group of desingularised moduli spaces of sheaves on K3 surfaces . J. Alg. Geom. 31(2022), no. 3, 425465. https://doi.org/10.1090/jag/802 CrossRefGoogle Scholar
Orlov, D. O., Equivalences of derived categories and K3 surfaces . J. Math. Sciences 84(1997), 13611381. https://doi.org/10.1007/bf02399195 CrossRefGoogle Scholar
Perego, A. and Rapagnetta, A., Deformations of the O’Grady moduli spaces . J. Reine Angew. Math. 678(2013), 134. https://doi.org/10.1515/crelle.2011.191 CrossRefGoogle Scholar
Perego, A. and Rapagnetta, A., Factoriality properties of moduli spaces of sheaves on abelian and K3 surfaces . Int. Math. Res. Not. 3(2014), 643680. https://doi.org/10.1093/imrn/rns233 CrossRefGoogle Scholar
Rapagnetta, A., On the Beauville form of the known irreducible symplectic varieties . Math. Ann. 340(2008), no. 1, 7795. https://doi.org/10.1007/s00208-007-0139-6 CrossRefGoogle Scholar
Reineke, E., Autoequivalences of twisted K3 surfaces . Compos. Math. 155(2019), 912937. https://doi.org/10.1112/s0010437x19007176 CrossRefGoogle Scholar
Saccà, G., Birational geometry of the intermediate Jacobian fibration (with an appendix by C. Voisin) . Geom. Top. 27(2023), no. 4, 14791538. https://doi.org/10.2140/gt.2023.27.1479 CrossRefGoogle Scholar
The Stacks Project Authors, The Stacks project. 2018. https://stacks.math.columbia.edu.Google Scholar
Voisin, C., Théorème de Torelli pour les cubiques de ${\mathbb{P}}^5$ . Invent. Math. 86(1986), 577601. https://doi.org/10.1007/bf01389270 CrossRefGoogle Scholar
Voisin, C., Hyper-Kähler compactification of the intermediate Jacobian fibration of a cubic fourfold: The twisted case . In: N. Budur, T. de Fernex, R. Docampo, and K. Tucker (eds.), Local and global methods in algebraic geometry, Contemp. Math., 712, Amer. Math. Soc., Providence, RI, 2018, pp. 341355. https://doi.org/10.1090/conm/712/14354 CrossRefGoogle Scholar
Yoshioka, K., Moduli spaces of stable sheaves on abelian surfaces . Math. Ann. 321(2001), no. 4, 817884. https://doi.org/10.1007/s002080100255 CrossRefGoogle Scholar
Yoshioka, K., Moduli spaces of twisted sheaves on a projective variety . Adv. Stud. Pure Math. 45(2006), 142. https://doi.org/10.2969/aspm/04510001 Google Scholar