Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T19:26:02.589Z Has data issue: false hasContentIssue false

Non-Isomorphic Tensor Products of Von Neumann Algebras

Published online by Cambridge University Press:  20 November 2018

J. J. Williams*
Affiliation:
University of Manitoba, Winnipeg, Manitoba
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper investigates special conditions under which the tensor product of two von Neumann algebras will be non-isomorphic to the tensor product of two others. The main tools are the algebraic invariants property Λx (x ≧ 0) (first defined by Powers [18]) and the r and ρ sets (defined by Araki and Woods [3]).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Araki, H., Asymptotic ratio set and property Lλ, Publ. Res. Inst. Math. Sci., Ser. A6 (1970), 443460.Google Scholar
2. Araki, H. and Woods, E. J., Complete Boolean algebras of type I factors, Publ. Res. Inst. Math. Sci., Ser. A. 2 (1966), 157242.Google Scholar
3. Araki, H. and Woods, E. J., A classification of factors, Publ. Res. Inst. Math. Sci., Ser. A. 4 (1968), 51130.Google Scholar
4. Bures, D. J. C., Certain factors constructed as infinite tensor products, Compositio Math. 15 (1963), 169191.Google Scholar
5. Bures, D. J. C., Tensor products of W*-algebras, Pacific J. Math. 27 (1968), 1337.Google Scholar
6. Ching, W. M., A continuum of non-isomorphic non-hyper finite factors, Comm. Pure Appl. Math. 23 (1970), 921937.Google Scholar
7. Connes, A., Calcul des deux invariants d'Araki et Woods par la théorie de Tomita et Takesaki, C. R. Acad. Sci. Paris Ser. A-B. 274 (1972), 175177.Google Scholar
8. Dixmier, J., Les algèbres d'opérateurs dans l'espace Hilbertien, Deuxième Édition (Gauthier- Villars, Paris, 1969).Google Scholar
9. Hakeda, J. and Tomiyama, J., On some extension properties of von Neumann algebras, Tôhoku Math. J. 19 (1967), 315323.Google Scholar
10. Kadison, R. V., Isometries of operator algebras, Ann. of Math. 54 (1951), 325338.Google Scholar
11. Kaplansky, I., A theorem on rings of operators, Pacific J. Math. 1 (1951), 227232.Google Scholar
12. Loomis, L. H., The lattice theoretic background of the dimension theory, Mem. Amer. Math. Soc. 18 (1955).Google Scholar
13. Murray, F. J. and von Neumann, J., On rings of operators, Ann. of Math. 37 (1936), 116229.Google Scholar
14. Murray, F. J. and J. von Neumann, On rings of operators, IV, Ann. of Math. 44 (1943), 716808.Google Scholar
15. von Neumann, J., On infinite direct products, Compositio Math. 6 (1938), 177.Google Scholar
16. von Neumann, J., On rings of operators, III, Ann. of Math. 41 (1940), 94161.Google Scholar
17. Powers, R. T., Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. 86 (1967), 138171.Google Scholar
18. Powers, R. T., U H F algebras and their applications to representations of the anticommutation relations, Cargèse lectures in physics 4 (1970), (ed. D. Kastler), 137168.Google Scholar
19. Pukânszky, L., Some examples of factors, Publ. Math. Debrecen 4 (1956), 135156.Google Scholar
20. Sakai, S., An uncountable family of non-hyper finite type III factors, Functional Analysis (ed. C. O. Wilde;) (Academic Press, New York, 1970), 65-70.Google Scholar
21. Schwartz, J. T., Two finite, non-hyper finite, non-isomorphic factors, Comm. Pure Appl. Math. 16 (1963), 1926.Google Scholar
22. Schwartz, J. T., W*-algebras (Gordon and Breach, New York, 1967).Google Scholar
23. Takenouchi, O., On type classification of factors constructed as infinite tensor products, Publ. Res. Inst. Math. Sci. Ser. A 4 (1968), 467482.Google Scholar
24. Tomiyama, J., On the projection of norm one in W*-algebras, Proc. Japan Acad. 33 (1957), 608612.Google Scholar