Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-27T12:59:01.327Z Has data issue: false hasContentIssue false

Lee Polynomials of Codes and Theta Functions of Lattices

Published online by Cambridge University Press:  20 November 2018

David P. Maher*
Affiliation:
Worcester Polytechnic Institute, Worcester, Massachusetts
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several authors [2; 3; 10; 12] have noticed the similarities between the theory of codes and the theory of Euclidean lattices. It is interesting to compare the two theories since they share a common problem, viz. the sphere packing problem. In the theory of codes one would like to find a code over Fp, i.e. a subspace of Fpn, such that non-intersecting spheres with respect to a given metric, centered at the code vectors, pack Fpn densely.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1978

References

1. Berlekamp, E. R., Algebraic coding theory (McGraw-Hill, N.Y., 1968).Google Scholar
2. M., Broué, Codes correcteurs d'erreurs auto-orthogonaux sur le corps a deux elements et formes quadratiques entières définies positives a discriminant + 1 , Comptes Rendus des Journées Mathématiques de la Société Math, de France, Univ. Sci. Tech. Languedoc (Montpellier, 1974), 71108.Google Scholar
3. M., Broué and Enguehard, M., Polynômes des poids de certains codes et fonctions thêta de certains réseaux, Ann. Scient. Ec. Norm. Sup. 5 (1972), 157181.Google Scholar
4. Conway, J. H., A group of order 8,315,553,613,086,720,000, Bull. London Math. Soc. 1 (1969), 7988.Google Scholar
5. Invent. Math. 7 (1969), 137142.Google Scholar
6. Gleason, A. M., Weight polynomials of self-dual codes and the MacWilliams identities, Actes Congres Internl. de Mathématique 3, 1970 (Gauthier-Villars, Paris (1971), 211215.Google Scholar
7. Gunning, R. C., Lectures on modular forms (Princeton Univ. Press, 1962).Google Scholar
8. Kitaoka, Y., On the relation between the positive definite quadratic forms with the same representation numbers, Proc. Japan Acad. Ifl (1971).Google Scholar
9. Leech, J., Notes on sphere packings, Can. J. Math. 19 (1967), 251267.Google Scholar
10. Leech, J. and Sloane, N. J. A., Sphere packings and error-correcting codes, Can. J. Math. 23 (1971), 718745.Google Scholar
11. MacWilliams, F. J., Mallows, C. L., and Sloane, N. J. A., Generalizations of Gleason s theorem on weight enumerators of self-dual codes, IEEE Trans. Info. Theory 18 (1972), 794805.Google Scholar
12. Mallows, C. L., Odlyzko, A. M., and Sloane, N. J. A., Upperbounds for modular forms, lattices, and codes, J. Algebra 36 (1975), 6876.Google Scholar
13a. Mallows, C. L. and Sloane, N. J. A., On the invariants of a linear group of order 336, Proc. Camb. Phil. Soc. 74 (1973), 435440.Google Scholar
13b. Mallows, C. L. and Sloane, N. J. A., An upper bound for self-dual codes, Information and Control 22 (1973), 188200.Google Scholar
14. Maher, D. P., Self-orthogonal codes and modular forms, Ph.D. Thesis, Lehigh University, Bethlehem, Pa., 1976.Google Scholar
15. Ogg, A., Modular forms and dirichlet series (W. A. Benjamin, Inc., N.Y., 1969).Google Scholar
16. Pless, V., A classification of self-orthogonal codes overGFifl), Discrete Math. 3 (1972), 209246.Google Scholar
17. Serre, J. P., A course in arithmetic (Springer-Verlag, New York, 1970).Google Scholar
18. Shimura, G., Introduction to the arithmetic theory of automorphic functions (Princeton University Press, Princeton, N.J., 1971).Google Scholar
19. Sloane, N. J. A., Codes over GF(4) and complex lattices, Algebra, J., to appear.Google Scholar
20. Tannery, J. and Moik, J., Elements de la théorie des fonctions elliptiques, t.2 (Gauthier-Villars, Paris 1898).Google Scholar