Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-06T16:00:19.930Z Has data issue: false hasContentIssue false

The Flag-Transitive Collineation Groups of the Finite Desarguesian Affine Planes

Published online by Cambridge University Press:  20 November 2018

David A. Foulser*
Affiliation:
Oxford University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let π be the Desarguesian affine plane of order n = pr, for p a prime and r a positive integer. A collineation group G of π is defined to be flag-transitive on π if G is transitive on the set of incident point-line pairs, or flags, of π. Further, G is doubly transitive on π if G is doubly transitive on the points of π. Clearly, G is flag transitive if G is doubly transitive on π.

The purpose of the following study is the explicit determination of the flagtransitive and the doubly transitive collineation groups of π (I am indebted to D. G. Higman for suggesting this problem). The results can be summarized in Theorems 1′ and 2′ below (a complete description of the results is contained in Sections 12-15).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1964

References

1. André, Johannes, Projective Ebenen über Fastkörpern, Math. Z., 62 (1955), 137160.Google Scholar
2. Artin, E., Geometric algebra (New York, 1957).Google Scholar
3. Birkhoff, Geo D. and Vandiver, H. S., On the integral divisors of an bn, Ann. Math., Ser. 2, 5 (1904), 173180.Google Scholar
4. Bussey, W. H., Galois field tables for pn < 169, Bull. Am. Math. Soc, 12 (1905), 2238.Google Scholar
5. Cartan, Henri and Eilenberg, Samuel, Homological algebra (Princeton, 1956).Google Scholar
6. Dickson, L. E., Linear groups (New York, 1958).Google Scholar
7. Hall, Marshall Jr., The theory of groups (New York, 1959).Google Scholar
8. Higman, D. G. and McLaughlin, J. E., Geometric ABA-groups, III. J. Math., 5 (1961), 382397.Google Scholar
9. Higman, D. H., Flag-transitive collineation groups of finite projective spaces, III. J. Math., 6 (1962), 434446.Google Scholar
10. Hochschild, G. and J-P. Serre, Cohomology of group extensions, Trans. Am. Math. Soc, 74 (1953), 110134.Google Scholar
11. Huppert, Bertram, Zweifach transitive, auflôsbare Permutationsgruppen, Math. Z., 68 (1957), 126150.Google Scholar
12. LeVeque, William J., Topics in number theory, vol. I (Reading, Mass., 1956).Google Scholar
13. Northcott, D. G., An introduction to homological algebra (Cambridge, 1960).Google Scholar
14. Ostrom, T. G. and A. Wagner, On projective and affine planes with transitive collineation groups, Math. Z., 71 (1959), 186199.Google Scholar
15. Wagner, A., On collineation groups of projective spaces, I, Math. Z., 76 (1961), 411426. 15a. On finite affine line transitive planes, to appear in Math. Z.Google Scholar
16. Zassenhaus, Hans, Kennzeichnung endlicher linearer Gruppen als Permutations gruppen, Abh. Math. Seminar Univ. Hamburg, 11 (1935), 1740.Google Scholar
17. Zassenhaus, Hans, Über endliche Fastkôrper, Abh. Math. Seminar Univ. Hamburg, 11 (1935), 187 220.Google Scholar
18. Zassenhaus, Hans, The theory of groups, 2nd ed. (New York, 1958).Google Scholar