Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T12:47:31.775Z Has data issue: false hasContentIssue false

Exponents of Diophantine Approximation in Dimension Two

Published online by Cambridge University Press:  20 November 2018

Michel Laurent*
Affiliation:
Institut deMathématiques de Luminy, 13288 Marseille Cedex 9, FRANCE, laurent@iml.univ-mrs.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\Theta \,=\,\left( \alpha ,\,\beta \right)$ be a point in ${{\text{R}}^{2}}$, with $1,\,\alpha ,\,\beta $ linearly independent over $\mathrm{Q}$. We attach to $\Theta $ a quadruple $\Omega \left( \Theta \right)$ of exponents that measure the quality of approximation to $\Theta $ both by rational points and by rational lines. The two “uniform” components of $\Omega \left( \Theta \right)$ are related by an equation due to Jarník, and the four exponents satisfy two inequalities that refine Khintchine's transference principle. Conversely, we show that for any quadruple $\Omega $ fulfilling these necessary conditions, there exists a point $\Theta \,\in \,{{\text{R}}^{2}}$ for which $\Omega \left( \Theta \right)\,=\,\Omega $.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2009

References

[1] Baker, R. C., Singular n-tuples and Hausdorff dimension. II. Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 577584.Google Scholar
[2] Bombieri, E. and Vaaler, J., On Siegel's lemma. Invent. Math. 73 (1983), no. 1, 1132.Google Scholar
[3] Bugeaud, Y. and Laurent, M., Exponents of Diophantine approximation and Sturmian continued fractions. Ann. Inst. Fourier 55 (2005), no. 3, 773804.Google Scholar
[4] Bugeaud, Y. and Laurent, M., On exponents of homogeneous and inhomogeneous Diophantine approximation. Mosc. Math. J. 5 (2005), no. 4, 747766.Google Scholar
[5] Bugeaud, Y. and Laurent, M., Exponents of Diophantine approximation. In: Diophantine geometry, CRM Series 4, Ed. Norm., Pisa, 2007, pp. 101121.Google Scholar
[6] Davenport, H. and Schmidt, W. M., Approximation to real numbers by algebraic integers. Acta Arith. 15 (1968/1969), 393416.Google Scholar
[7] Fischler, S., Spectres pour l’approximation d’un nombre réel et de son carré. C. R. Math. Acad. Sci. Paris 339 (2004), no. 10, 679682.Google Scholar
[8] Jarnìk, V., Über ein Satz von A. Khintchine. Práce Mat.-Fiz. 43 (1935), 151166.Google Scholar
[9] Jarnìk, V., O simultánních diofantickych approximacích, Rozpravy Tŕ. České Akad 45, c. 19 (1936), 16 pp.Google Scholar
[10] Jarnìk, V., Über ein Satz von A. Khintchine, 2. Mitteilung. Acta Arith. 2 (1936), 122.Google Scholar
[11] Jarnìk, V., Zum Khintchineschen “Übertragungssatz”. Trav. Inst. Math. Tbilissi 3 (1938), 193212.Google Scholar
[12] Jarnìk, V., Une remarque sur les approximations diophantiennes linéaires. Acta Sci.Math. Szeged 12 (1950), 8286.Google Scholar
[13] Jarnìk, V., Contribution à la théorie des approximations diophantiennes linéaires et homogènes. Czechoslovak Math. J. 4 (1954), no. 79, 330353.Google Scholar
[14] Khintchine, A. J., Über eine Klasse linearer diophantischer Approximationen. Rendiconti Circ. Mat. Palermo 50 (1926), 170195.Google Scholar
[15] Lagarias, J. C., Best Diophantine approximations to a set of linear forms. J. Austral.Math. Soc. Ser. A 34 (1983), no. 1, 114122.Google Scholar
[16] Roy, D., Approximation to real numbers by cubic algebraic integers, I. Proc. London Math. Soc. 88 (2004), no. 1, 4262.Google Scholar
[17] Roy, D., Diophantine approximation in small degree. Number Theory, CRM Proc. Lecture Notes 36, American Mathematical Society, Providence, RI, 2004, pp. 269285.Google Scholar
[18] Roy, D., On two exponents of approximation related to a real number and its square. Canad. J. Math. 59 (2007), no. 11, 211224.Google Scholar
[19] Rynne, B. P., A lower bound for the Hausdorff dimension of sets of singular n-tuples. Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 387394.Google Scholar
[20] Schmidt, W. M., On heights of algebraic subspaces and diophantine approximations. Ann. of Math. 85 (1967), 430472.Google Scholar