Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4k54s Total loading time: 0.154 Render date: 2021-11-30T07:14:15.544Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Classes of Positive Definite Unimodular Circulants

Published online by Cambridge University Press:  20 November 2018

Morris Newman
Affiliation:
National Bureau of Standards, Washington 25, D.C.
Olga Taussky
Affiliation:
National Bureau of Standards, Washington 25, D.C.
Rights & Permissions[Opens in a new window]

Extract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

All matrices considered here have rational integral elements. In particular some circulants of this nature are investigated. An n × n circulant is of the form

The following result concerning positive definite unimodular circulants was obtained recently (3 ; 4 ):

Let C be a unimodular n × n circulant and assume that C = AA' where A is an n × n matrix and A' its transpose. Then it follows that C = C1C1', where C1 is again a circulant.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1957

References

1. Minkowski, H., Grundlagen für eine Théorie der quadratischen Formen mit ganzzahligec Koeffizienten, Gesammelte Abhandlungen 1 (1911), 3144.Google Scholar
2. Mordell, L. J., The definite quadratic forms in 8 variables with determinant unity, J. de Math. pures et appliquées, 17 (1938), 4146.Google Scholar
3. Newman, M. and Taussky, O., On a generalization of the normal basis in abelian algebrain number fields, Comm. on Pure and Applied Math. 9 (1956), 8591.CrossRefGoogle Scholar
4. Taussky, O., Unimodular integral circulants, Math. Zeitschr. 63 (1955), 286289.CrossRefGoogle Scholar
You have Access
10
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Classes of Positive Definite Unimodular Circulants
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Classes of Positive Definite Unimodular Circulants
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Classes of Positive Definite Unimodular Circulants
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *