Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-29T11:31:21.814Z Has data issue: false hasContentIssue false

Best Trigonometric Approximation, Fractional Order Derivatives and Lipschitz Classes

Published online by Cambridge University Press:  20 November 2018

P. L. Butzer
Affiliation:
Technological University of Aachen, Aachen, West Germany
H. Dyckhoff
Affiliation:
Technological University of Aachen, Aachen, West Germany
E. Görlich
Affiliation:
Technological University of Aachen, Aachen, West Germany
R. L. Stens
Affiliation:
Technological University of Aachen, Aachen, West Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let C denote the space of 2π-periodic continuous functions and πn the set of trigonometric polynomials of degree ≦ n, where n ϵ P = {0, 1, … } . Given θ > 0, the well-known theorem of Stečkin and its converse state that the best approximation of an ƒ ϵ C with respect to the max-norm satisfies

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Butzer, P. L., Gorlich, E. and Scherer, K., Introduction to interpolation and approximation, in preparation.Google Scholar
2. Butzer, P. L. and Nessel, R. J., Fourier analysis and approximation, Vol.1 (Basel: Birkhàuser; New York: Academic Press, 1971).Google Scholar
3. Butzer, P. L. and Scherer, K., On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and theorems of M. Zamansky and Steckin, S. B., Aequationes Math. 3 (1969), 170185.Google Scholar
4. Butzer, P. L. and Scherer, K. Uber die Fundamental s àtze der klassischen Approximationstheorie in abstrakten Ràumen, in Abstract Spaces and Approximation (edited by P. L. Butzer and B. Sz.- Nagy), ISNM Vol. 10,113125 ( Basel: Birkhàuser, 1969).Google Scholar
5. Butzer, P. L. and Westphal, U., An access to fractional differentiation via fractional difference quotients, in Fractional Calculus and its Applications (edited by B. Ross), Lecture Notes in Math. 457, 116145 (Berlin: Springer, 1975).Google Scholar
6. Civin, P., Inequalities for trigonometric integrals, Duke Math. J. 8 (1941), 656665.Google Scholar
7. Dahmen, W. and Gôrlich, E., Best approximation with exponential orders and intermediate spaces, Math. Z. 148 (1976), 721.Google Scholar
8. Gorlich, E. and Paulus, G., A review of Bernstein and Nikolskii-type inequalities (in preparation).Google Scholar
9. Gorlich, E., Nessel, R. J. and Trebels, W., Bernstein-type inequalities for families of multiplier operators in Banach spaces with Cesaro decompositions I, II, Acta Sci. Math. (Szeged) 3/+ (1973), 121-130; 36 (1974), 3948.Google Scholar
10. Johnen, H., Inequalities connected with the moduli of smoothness, Mat. Vesnik (9﹛24) (1972), 289303.Google Scholar
11. Junggeburth, J., Scherer, K. and Trebels, W., Zur besten Approximation auf Banachrdumen mit Anwendungen auf ganze Funktionen, Forschungsberichte des Landes Nordrhein- Westfalen Nr. 2311, 5175 (Opladen: Westdeutscher Verlag, 1973).Google Scholar
12. Nessel, R. J. and Trebels, W., Multipliers with respect to spectral measures in Banach-spaces and approximation, II: One-dimensional Fourier multipliers, J. Approximation Theory 14, (1975), 2329.Google Scholar
13. Nessel, R. J. and Wilmes, G., A note on fractional M. Riesz inequalities, to appear.Google Scholar
14. Stark, E. L., Inequalities for trigonometric moments and Fourier coefficients of positive cosine polynomials in approximation, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz, 544-576 (1976), 6376 (556).Google Scholar
15. Timan, A. F., Theory of approximation of functions of a real variable (Oxford, Pergamon Press, 1963).Google Scholar
16. Westphal, U., An approach to fractional powers of operators via fractional differences, Proc. London Math. Soc. 29 (1974), 557576.Google Scholar
17. Zygmund, A., Trigonometric series, II (Cambridge Univ. Press, 1959).Google Scholar