Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T12:29:30.562Z Has data issue: false hasContentIssue false

Generating function of multiple polylog of Hurwitz type

Published online by Cambridge University Press:  21 November 2022

Kentaro Ihara*
Affiliation:
Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Japan
Yusuke Kusunoki
Affiliation:
EX Corporation, 3-19-3 Toyosaki, Osaka, Japan e-mail: kusunokiyusuke1130@gmail.com
Yayoi Nakamura
Affiliation:
Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Japan e-mail: yayoi@math.kindai.ac.jp
Hitomi Saeki
Affiliation:
Uenomiya Taishi Senior High School, Minamikawachi, Osaka, Japan e-mail: shu.apple2k@gmail.com

Abstract

We introduce interpolated multiple Hurwitz polylogs and interpolated multiple Hurwitz zeta values. In addition, we discuss the generating functions for the sum of the polylogs/zeta values of fixed weight, depth, and all heights. The functions are expressed in terms of generalized hypergeometric functions. Compared with the pioneering results of Ohno and Zagier on the generating function, our setup generalizes the results in three directions, namely, at general heights, with a t-interpolation, and as a Hurwitz type. As an application, by fixing the Hurwitz parameter to rational numbers, the generating functions for multiple zeta values with level are given.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author is supported by JSPS KAKENHI Grant Number 18K03260.

References

Andrews, G. E., Askey, R., and Roy, R., Special functions, Cambridge University Press, Cambridge, 1999.10.1017/CBO9781107325937CrossRefGoogle Scholar
Aoki, T., Kombu, Y., and Ohno, Y., A generating function for sums of multiple zeta values and its applications . Proc. Amer. Math. Soc. 136(2008), no. 2, 387395.CrossRefGoogle Scholar
Aoki, T. and Ohno, Y., Sum relations for multiple zeta values and connection formula for the Gauss hypergeometric function . Publ. Res. Inst. Math. Sci. 41(2005), no. 2, 239337.CrossRefGoogle Scholar
Aoki, T., Ohno, Y., and Wakabayashi, N., On generating functions of multiple zeta values and generalized hypergeometric functions . Manuscripta Math. 134(2011), nos. 1–2, 139155.CrossRefGoogle Scholar
Bradley, D. M., Multiple $q$ -zeta values . J. Algebra 283(2005), 752798.CrossRefGoogle Scholar
Gasper, G. and Rahman, M., Basic hypergeometric series. 2nd ed., Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004.10.1017/CBO9780511526251CrossRefGoogle Scholar
Hoffman, M. E., An odd variant of multiple zeta values . Commun. Number Theory Phys. 13(2019), no. 3, 529567.CrossRefGoogle Scholar
Kamano, K., The multiple Hurwitz zeta function and a generalization of Lerch’s formula . Tokyo J. Math. 29(2006), no. 1, 6173.CrossRefGoogle Scholar
Kaneko, M. and Tsumura, H., On multiple zeta values of level two . Tsukuba J. Math. 44(2020), no. 2, 213234.CrossRefGoogle Scholar
Kaneko, M. and Tsumura, H., Zeta functions connecting multiple zeta values and poly-Bernoulli numbers . Adv. Stud. Pure Math. 84(2020), 181204.10.2969/aspm/08410181CrossRefGoogle Scholar
Li, Z., Sum of multiple zeta values of fixed weight, depth and $i$ -height . Math. Z. 258(2008), 133142.CrossRefGoogle Scholar
Li, Z., Sum of multiple $q$ -analogue of non-strict multiple zeta values . Proc. Amer. Math. Soc. 138(2010), no. 2, 505516.CrossRefGoogle Scholar
Li, Z. and Qin, C., Some relations of interpolated multiple zeta values . Int. J. Math. 28(2017), no. 5, Article no. 1750033, 25 pp.CrossRefGoogle Scholar
Li, Z. and Wakabayashi, N., Sum of interpolated multiple $q$ -zeta values . J. Number Theory 200(2019), 205250.CrossRefGoogle Scholar
Matsumoto, K., The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions I . J. Number Theory 101(2003), 223243.CrossRefGoogle Scholar
Ohno, Y. and Okuda, J., On the sum formula for the $q$ -analogue of non-strict multiple zeta values . Proc. Amer. Math. Soc. 135(2007), 30293037.CrossRefGoogle Scholar
Ohno, Y. and Zagier, D., Multiple zeta values of fixed weight, depth, and height . Indag. Math. (N.S.) 12(2001), 483487.CrossRefGoogle Scholar
Okuda, J. and Takeyama, Y., On relations for the multiple $q$ -zeta values . Ramanujan J. 14(2007), 379387.CrossRefGoogle Scholar
Takeyama, Y., A $q$ -analogue of non-strict multiple zeta values and basic hypergeometric series . Proc. Amer. Math. Soc. 137(2009), no. 9, 29973002.CrossRefGoogle Scholar
Wakabayashi, N., Interpolation of $q$ -analogue of multiple zeta and zeta-star values . J. Number Theory 174(2017), 2639.CrossRefGoogle Scholar
Yamamoto, S., Interpolation of multiple zeta and zeta-star values . J. Algebra 385(2013), 102114.CrossRefGoogle Scholar
Zhao, J., Multiple $q$ -zeta functions and multiple $q$ -polylogarithms . Ramanujan J. 14(2007), 189221.CrossRefGoogle Scholar