Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-x7pwn Total loading time: 0.249 Render date: 2021-05-14T01:08:21.203Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Eigenvalue Optimisation on Flat Tori and Lattice Points in Anisotropically Expanding Domains

Published online by Cambridge University Press:  07 March 2019

Jean Lagacé
Affiliation:
Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom Email: j.lagace@ucl.ac.uk
Corresponding
E-mail address:

Abstract

This paper is concerned with the maximisation of the $k$ -th eigenvalue of the Laplacian amongst flat tori of unit volume in dimension $d$ as $k$ goes to infinity. We show that in any dimension maximisers exist for any given $k$ , but that any sequence of maximisers degenerates as $k$ goes to infinity when the dimension is at most 10. Furthermore, we obtain specific upper and lower bounds for the injectivity radius of any sequence of maximisers. We also prove that flat Klein bottles maximising the $k$ -th eigenvalue of the Laplacian exhibit the same behaviour. These results contrast with those obtained recently by Gittins and Larson, stating that sequences of optimal cuboids for either Dirichlet or Neumann boundary conditions converge to the cube no matter the dimension. We obtain these results via Weyl asymptotics with explicit control of the remainder in terms of the injectivity radius. We reduce the problem at hand to counting lattice points inside anisotropically expanding domains, where we generalise methods of Yu. Kordyukov and A. Yakovlev by considering domains that expand at different rates in various directions.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

The research of the author was supported by NSERC’s Alexander-Graham-Bell doctoral scholarship.

References

Antunes, P. R. S. and Freitas, P., Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154(2012), 235257. https://doi.org/10.1007/s10957-011-9983-3CrossRefGoogle Scholar
Antunes, P. R. S. and Freitas, P., Optimal spectral rectangles and lattice ellipses. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2013), no. 2015, 20120492. https://doi.org/10.1098/rspa.2012.0492Google Scholar
Banaszczyk, W., New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(1993), 625635. https://doi.org/10.1007/BF01445125CrossRefGoogle Scholar
van den Berg, M., Bucur, D., and Gittins, K., Maximising Neumann eigenvalues on rectangles. Bull. Lond. Math. Soc. 48(2016), 877894. https://doi.org/10.1112/blms/bdw049CrossRefGoogle Scholar
van den Berg, M. and Gittins, K., Minimizing Dirichlet eigenvalues on cuboids of unit measure. Mathematika 63(2017), 469482. https://doi.org/10.1112/S0025579316000413CrossRefGoogle Scholar
Berger, A., The eigenvalues of the Laplacian with Dirichlet boundary condition in ℝ2 are almost never minimized by disks. Ann. Global Anal. Geom. 47(2015), 285304. https://doi.org/10.1007/s10455-014-9446-9CrossRefGoogle Scholar
Berger, M., Gauduchon, P., and Mazet, E., Le spectre d’une variété riemannienne. Lecture Notes in Mathematics, 194, Springer-Verlag, Berlin-New York, 1971.CrossRefGoogle Scholar
Buser, P., A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(1982), 213230.CrossRefGoogle Scholar
Cassels, J. W. S., An introduction to the geometry of numbers. Die Grundlehren der mathematischen Wissenschaften, Band 99, Springer-Verlag, Berlin-New York, 1971.Google Scholar
Colbois, B. and Dodziuk, J., Riemannian metrics with large 𝜆1. Proc. Amer. Math. Soc. 122(1994), 905906. https://doi.org/10.2307/2160770Google Scholar
Duistermaat, J. J. and Guillemin, V. W., The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1975), 3979. https://doi.org/10.1007/BF01405172CrossRefGoogle Scholar
Faber, G., Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitzungsber. Bayer. Akad. Wiss. München, Math.-Phys. Kl., 1923, pp. 169172.Google Scholar
Gittins, K. and Larson, S., Asymptotic behaviour of cuboids optimising Laplacian eigenvalues. Integral Equations Operator Theory 89(2017), 607629. https://doi.org/10.1007/s00020-017-2407-5CrossRefGoogle Scholar
Hassannezhad, A., Kokarev, G., and Polterovich, I., Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound. J. Spectr. Theory 6(2016), 807835. https://doi.org/10.4171/JST/143CrossRefGoogle Scholar
Hersch, J., Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér. A-B 270(1970), A1645A1648.Google Scholar
Iosevich, A. and Liflyand, E., Decay of the Fourier transform, analytic and geometric aspects. Birkhäuser/Springer, Basel, 2014. https://doi.org/10.1007/978-3-0348-0625-1Google Scholar
Kao, C.-Y., Lai, R., and Osting, B., Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces. ESAIM Control Optim. Calc. Var. 23(2017), 685720. https://doi.org/10.1051/cocv/2016008CrossRefGoogle Scholar
Karpukhin, M., Nadirashvili, N., Penskoi, A. V., and Polterovich, I., An isoperimetric inequality for Laplace eigenvalues on the sphere. J. Diff. Geom., to appear.Google Scholar
Kordyukov, Yu. A. and Yakovlev, A. A., Lattice points in domains and adiabatic limits. (Russian) Algebra i Analiz 23(2011), 8095. https://doi.org/10.1090/S1061-0022-2012-01225-2Google Scholar
Kordyukov, Yu. A. and Yakovlev, A. A., The problem of the number of integer points in families of anisotropically expanding domains, with applications to spectral theory. Mat. Zametki 92(2012); trans. in Math. Notes 92(2012), no. 3–4, 574–576. https://doi.org/10.1134/S0001434612090295Google Scholar
Kordyukov, Yu. A. and Yakovlev, A. A., The number of integer points in a family of anisotropically expanding domains. Monatsh. Math. 178(2015), 97111. https://doi.org/10.1007/s00605-015-0787-7CrossRefGoogle Scholar
Kordyukov, Yu. A. and Yakovlev, A. A., On a problem in geometry of numbers arising in spectral theory. Russ. J. Math. Phys. 22(2015), 473482. https://doi.org/10.1134/S106192081504007XCrossRefGoogle Scholar
Krahn, E., Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94(1925), 97100. https://doi.org/10.1007/BF01208645CrossRefGoogle Scholar
Krahn, E., Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen. Acta Comm. Univ. Tartu (Dorpat) A9(1926), 144.Google Scholar
Lagacé, J. and Parnovski, L., A generalised Gauss circle problem and integrated density of states. J. Spectr. Theory 6(2016), 859879. https://doi.org/10.4171/JST/145CrossRefGoogle Scholar
Nadirashvili, N., Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal. 6(1996), 877897. https://doi.org/10.1007/BF02246788CrossRefGoogle Scholar
Szegö, G., Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech. Anal. 3(1954), 343356. https://doi.org/10.1512/iumj.1954.3.53017Google Scholar
Weinberger, H. F., An isoperimetric inequality for the N-dimensional free membrane problem. J. Rational Mech. Anal. 5(1956), 633636. https://doi.org/10.1512/iumj.1956.5.55021Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Eigenvalue Optimisation on Flat Tori and Lattice Points in Anisotropically Expanding Domains
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Eigenvalue Optimisation on Flat Tori and Lattice Points in Anisotropically Expanding Domains
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Eigenvalue Optimisation on Flat Tori and Lattice Points in Anisotropically Expanding Domains
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *