Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-26T12:54:41.473Z Has data issue: false hasContentIssue false

L’émergence du système phonologique chez l’enfant: l’apport de la modélisation articulatoire

Published online by Cambridge University Press:  27 June 2016

Lucie Ménard
Affiliation:
Université du Québec à Montréal
Louis-Jean Boë
Affiliation:
Université Stendhal, Grenoble

Abstract

The impact of anatomical transformations on the acquisition of sounds by infants remains poorly understood. Using the Variable Linear Articulator? Model, we simulate vowel production in the course of non-uniform vocal tract growth. Production abilities related to vocal tract growth are described by simulating French vowels, generated by assuming that sensori-motor control abilities are identical in newborns and adults. Despite small vocal tract size, an infant is able to produce all the vowels of its first language. The recurrence of certain units in the babbling inventory is attributable to motor control immaturity and cognitive abilities. Simulation of articulatory fibers provides a more accurate view of the relation between articulatory strategies and acoustic targets. The results highlight differences relative to labial and lingual articulators.

Résumé

Résumé

Les connaissances relatives à l’impact des transformations anatomiques sur l’acquisition des sons de la parole chez l’enfant sont encore parcellaires. Nous simulons la production des voyelles au cours de la croissance non uniforme du conduit vocal à l’aide d’un modèle articulatori-acoustique. Les capacités de production reliées à la croissance du conduit vocal sont décrites par le biais de simulations des voyelles du français, générées en supposant des capacités de contrôle sensori-moteur identiques chez le nouveau-né et l’adulte. Malgré la petite taille du conduit vocal, l’enfant serait en mesure de produire toutes les voyelles de sa langue maternelle. La récurrence de certaines unités dans l’inventaire du babillage est attribuable à l’immaturité du contrôle moteur et des capacités cognitives. La simulation des fibres articulatoires est l’occasion de préciser les relations entre stratégies articulatoires et cibles acoustiques. Les résultats mettent en lumière des différences relatives aux articulateurs labial et lingual.

Type
Articles
Copyright
Copyright © Canadian Linguistic Association 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Atal, B.S., Chang, J.J., Mathews, M.V., et Tukey, J.W.. 1978. Inversion of articulatory-to-acoustic transformation in the vocal tract by a computer-sorting technique. Journal of the Acoustical Society of America 63:15351555.CrossRefGoogle ScholarPubMed
Beck, J.M. 1997. Organic variation of the vocal apparatus. In Handbook of phonetic sciences, sous la dir. Hardcastle, de W.J. et Laver, J., 256297. Oxford: Blackwell.Google Scholar
Boë, L.-J. 1999. Modelling the growth of the vocal tract vowel spaces of newly-born infants and adults: Consequences for ontogenesis and phylogenesis. In Proceedings of the 14th International Congress of Phonetic Sciences 3, 25012504, San Francisco.Google Scholar
Boë, L.-J., Abry, C., Beautemps, D., Schwartz, J.-L., et Laboissière, R.. 2000. Les sosies vocaliques: Inversion et focalisation. In Actes des 23e Journées d’Étude sur la Parole, 257260, Aussois.Google Scholar
Boë, L.-J., Gabioud, B., et Perrier, P.. 1995. The SMIP: An interactive articulatory-acoustic software for speech production studies. Bulletin de la communication parlée 3:137154.Google Scholar
Boë, L.-J. et Maeda, S.. 1997. Modélisation de la croissance du conduit vocal. Espace vocalique des nouveau-nés et des adultes. Conséquences pour l’ontogenèse et la phylogenèse. In Journées d’Etudes Linguistiques: La voyelle dans tous ses états, 98105. Nantes.Google Scholar
Boë, L.-J., Perrier, P., Guérin, B., et Schwartz, J.-L.. 1989. Maximal vowel space. In First European Conference on Speech Communication and Technology (Eurospeech) 2, 281284. Paris.Google Scholar
Brosda, S. 1998. Du babillage canonique à la naissance du contrôle des degrés de liberté des articulateurs. TER Maîtrise Sciences du langage, ICP Université Stendhal, Grenoble.Google Scholar
Buhr, R.D. 1980. The emergence of vowels in an infant. Journal of Speech and Hearing Research 23:7394.CrossRefGoogle ScholarPubMed
Callan, D.E., Kent, R.D., Guenther, F.H., et Vorperian, H.K.. 2000. An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system. Journal of Speech, Language, and Hearing Research 43:721736.Google Scholar
Davis, B.L. et MacNeilage, P.F.. 1995. The articulatory basis of babbling. Journal of Speech and Hearing Research 38:229241.Google Scholar
Eguchi, S. et Hirsch, I.J.. 1969. Development of speech sounds in children. Acta Oto-Laryngol (suppl.) 257:551.Google Scholar
Fant, G. 1966. A note on vocal tract size factors and non-uniform F-pattern scalings. Speech Transmission Laboratory Quarterly Progress and Status Report 4/1966:2230. KTH [Royal Institute of Technology], Stockholm.Google Scholar
Fant, G. 1975. Non-uniform vowel normalization. Speech Transmission Laboratory Quarterly Progress and Status Report 23/1975:119. KTH [Royal Institute of Technology], Stockholm.Google Scholar
Fitch, W.T. et Giedd, J.. 1999. Morphology and development of the human vocal tract: A study using magnetic resonance imaging. Journal of the Acoustical Society of America 106:15111522.Google Scholar
Gabioud, B. 1994. Articulatory models in speech synthesis. In Fundamentals of speech synthesis and recognition: Basic concepts, state-of-the-art and future challenges, sous la dir. Keller, de E., 215230. Chichester: John Wiley.Google Scholar
Goldstein, U.G. 1980. An articulatory model for the vocal tract of growing children. Thèse de doctorat, Massachusetts Institute of Technology, Cambridge, Massachusett.Google Scholar
Green, J.R., Moore, C.A., Higashikawa, M., et Steeve, R.W.. 2000. The physiologic development of speech motor control: Lip and jaw coordination. Journal of Speech, Language, and Hearing Research 43:239255.CrossRefGoogle ScholarPubMed
Guiard-Marigny, T. 1992. Modélisation des lèvres. Mémoire de DEA, Institut National Polytechnique de Grenoble.Google Scholar
Hillengrand, J., Getty, L.A., Clark, M.J., et Wheeler, K.. 1995. Acoustic characteristics of American English vowels. Journal of the Acoustical Society of America 97:30993111.CrossRefGoogle Scholar
Hirano, M., Kurita, S., et Nakashima, T.. 1981. The structure of the vocal folds. In Vocal fold physiology, sous la dir. Stevens, de K.N. et Hirano, M., 3341. Tokyo: University of Tokyo Press.Google Scholar
Hirano, M., Kurita, S., et Nakashima, T.. 1983. Growth, development, and aging of the human vocal cords. In Vocal fold physiology: Contemporary research and clinical issues, sous la dir. Bless, de D.M. et Abbs, J. H., 2343. San Diego: College-Hill Press.Google Scholar
Kent, R.D. 1976. Anatomical and Neuromuscular Maturation of the Speech Mechanism: Evidence from Acoustic Studies. Journal of Speech and Hearing Research 19:421447.Google Scholar
Kent, R.D. 1984. Psychobiology of speech development: Co-emergence of language and a movement system. American Journal of Physiology 246:888894.Google Scholar
Kent, R.D. 1992. The biology of phonological development. In Phonological development: Models, research, implications, sous la dir. Ferguson, de C.A., Menn, L., et Stoel-Gammon, C., 6590. Timonium, MD: York Press.Google Scholar
Kent, R.D. 1997. The speech sciences. San Diego: Singular Publishing Group.Google Scholar
Kent, R.D. et Forner, L.L.. 1979. Developmental study of vowel formant frequencies in an imitation task. Journal of the Acoustical Society of America 65:208217.Google Scholar
Kent, R.D. et Miolo, G.. 1995. Phonetic abilities in the first year of life. In The handbook of child language, sous la dir. Fletcher, de P. et MacWhinney, B., 303334. Cambridge: Blackwell.Google Scholar
Kent, R.D. et Murray, A.D.. 1982. Acoustic features of infant vocalic utterances at 3, 6 and 9 months. Journal of the Acoustical Society of America 72:353365.Google Scholar
Koopmans-van Beinum, F.J. et van der Stelt, J.M.. 1986. Early stages in the development of speech movements. In Precursors of early speech, sous la dir. Lindblom, de B. et Zetterström, R., 3750. New York: Stockton Press.CrossRefGoogle Scholar
Kuhl, P.K. et Meltzoff, A.N.. 1996. Infant vocalizations in response to speech: Vocal imitation and developmental change. Journal of the Acoustical Society of America 100:24252438.Google Scholar
Lee, S., Potamianos, A., et Narayanan, S.. 1999. Acoustics of children’s speech: Developmental changes of temporal and spectral parameters. Journal of the Acoustical Society of America 105:14551468.Google Scholar
Lieberman, P. et Crelin, E.S.. 1971. On the speech of the Neanderthal man. Linguistic Inquiry 2:203222.Google Scholar
Lindblom, B. 1996. Role of articulation in speech perception: Clues from production. Journal of the Acoustical Society of America 99:16831692.CrossRefGoogle ScholarPubMed
Locke, J.L. 1983. Phonological acquisition and change. New-York: Academic Press.Google Scholar
MacNeilage, P.F. et Davis, B.L.. 1990. Acquisition of speech production: Frames, then content. In Attention and Performance XIII: Motor Representation and Control, sous la dir. Jeannerod, de M., 453475. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Maddieson, I. 1986. Patterns of sounds, 2e éd., Cambridge: Cambridge University Press.Google Scholar
Maeda, S. 1979. An articulatory model of the tongue based on a statistical analysis. Journal of the Acoustical Society of America 65:S22.Google Scholar
Maeda, S. 1990. Compensatory articulation during speech: Evidence from the analysis and synthesis of vocal-tract shapes using an articulatory model. In Speech production and speech modelling, sous la dir. Hardcastle, de W.J. et Marchal, A., 131149. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Ménard, L. 2002. Production et perception des voyelles au cours de la croissance du conduit vocal: variabilité, invariance et normalisation. Thèse de doctorat, Université Stendhal/Institut de la communication parlée, Grenoble.Google Scholar
Mermelstein, P. 1973. Articulatory model for the study of speech production. Journal of the Acoustical Society of America 53:10701082.CrossRefGoogle Scholar
Nordstrom, P.-E. 1977. Female and infants vocal tracts simulated from male area functions. Journal of Phonetics 5:8192.Google Scholar
Perkell, J.S., Matthies, M.L., Svirsky, M.A., et Jordan, M.I., 1995. Goal-based speech motor control: A theoretical framework and some preliminary data. Journal of Phonetics 23:2335.CrossRefGoogle Scholar
Peterson, G.E. et Barney, H.L.. 1952. Control method used in the study of vowels. Journal of the Acoustical Society of America 24:175184.Google Scholar
Polger, G. et Weng, T.. 1979. Pulmonary function testing in children: Techniques and standards. Philadelphia: W.B. Saunders.Google Scholar
Savariaux, C., Perrier, P., et Orliaguet, J.-P.. 1995. Compensation strategies for the perturbation of the rounded vowel [u] using a lip-tube: A study of the control space in speech production. Journal of the Acoustical Society of America 98:24282442.Google Scholar
Schroeder, M.R., Atal, B.S., et Hall, J.L.. 1979. Objective measure of certain speech signal degradations based on masking properties of human auditory perception. In Frontiers of speech communication research, sous la dir. Lindblom, de B. et Ohman, S., 217229. London: Academic.Google Scholar
Schwartz, J.-L., Boë, L.-J., Vallée, N., et Abry, C.. 1997. The Dispersion-Focalization Theory of vowel systems. Journal of Phonetics 25:255286.Google Scholar
Smith, B.L. et Kenney, M.K.. 1998. An assessment of several acoustic parameters in children’s speech production development: Longitudinal data. Journal of Phonetics 26:95108.Google Scholar
Stark, R.E. 1979. Prespeech segmental feature development. In Language Acquisition, sous la dir. Fletcher, de P. et Garman, M., 1532. New-York: Cambridge University Press.Google Scholar
Syrdal, A.K. et Gopal, H.S.. 1986. A perceptual model of vowel recognition based on the auditory representation of American English vowels. Journal of the Acoustical Society of America 79:10861100.CrossRefGoogle ScholarPubMed
Thelen, E. 1991. Motor aspects of emergent speech: A dynamic approach. In Biological and behavioral determinants of language development, sous la dir. Krasnegor, de N., Rumbaugh, D., Schiefelbusch, R., and Studdert-Kennedy, M., 339362. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Titze, I. 1989. Physiologic and acoustic differences between male and female voices. Journal of the Acoustical Society of America 85:16991707.Google Scholar
Vallée, N. 1994. Systèmes vocaliques: de la typologie aux prédictions. Thèse de doctorat, Université Stendhal, Grenoble.Google Scholar
Vallée, N., Boë, L.-J., et Payan, Y.. 1995. Vowel prototypes for Upsid’s 33 phonemes. Proceedings of the International Congress of Phonetic Sciences 1, 424427. Stockholm.Google Scholar
Vihman, M.M. 1996. Phonological development. Cambridge: Blackwell.Google Scholar
Vilain, A., Abry, C., Badin, P., et Brosda, S., 1999. From idiosyncratic pure frames to variegated babbling: Evidence from articulatory modelling. Proceedings of the 14th International Congress of Phonetic Sciences, 3, 24972500. San Francisco.Google Scholar
Vorperian, H.K. 2000. Anatomic development of the vocal tract structures as visualized by MRI. Thèse de doctorat, University of Wisconsin-Madison, Madison.Google Scholar
Watkin, W.L. et Fromm, D.. 1984. Labial coordination in children: Preliminary considerations. Journal of the Acoustical Society of America 75:629632.Google Scholar