Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T04:19:18.698Z Has data issue: false hasContentIssue false

Towards a practical trap for deer flies (Diptera: Tabanidae): initial tests of a bi-level Nzi trap

Published online by Cambridge University Press:  03 January 2024

Steve Mihok*
Affiliation:
Independent Scientist, Russell, Ontario, K4R 0G4, Canada
*

Abstract

A modified Nzi trap was tested at a residence and at a farm in eastern Ontario, Canada to better capture high-flying tabanids (Diptera) such as Chrysops Meigen. A new upper trap entrance was created to provide a higher and larger opening by reducing the front blue top shelf to half its height. To minimise escape of low-flying tabanids, a vertical inner baffle was added to direct low-flying tabanids up into the cone. Half of the tests of 18 new designs caught 1.5–2.7 times more deer flies than the Nzi trap did, with the other trap designs being as effective as the Nzi trap. The optimal design that maintained equal catches of other biting flies relative to the Nzi trap was one with a phthalogen inner horizontal shelf and a netting inner vertical baffle. This design is defined in the present as the “bi-level Nzi trap.” Chrysops entered the trap mostly through the top (88%; 17 spp.), along with Hybomitra Enderlein (94%; 12 spp.). Tabanus Linnaeus (9 spp.) entered through both entrances. The most abundant Tabanus, T. quinquevittatus Wiedemann, entered mostly through the bottom (70%), whereas Stomoxys calcitrans Linnaeus entered mostly through the top (92%).

Résumé

Résumé

Un piège Nzi modifié a été mis à l'essai dans une résidence et dans une ferme de l'est de l'Ontario, Canada pour mieux attraper les tabanidés (Diptera) volant à haute altitude comme les Chrysops Meigen. Une nouvelle entrée supérieure au piège a été créée pour fournir une ouverture plus haute et plus grande en réduisant simplement l'étagère supérieure bleue avant à la moitié de sa hauteur. Pour minimiser la fuite des tabanidés volant à basse altitude, un déflecteur intérieur vertical a été ajouté pour diriger les tabanidés volant à basse altitude dans le cône. La moitié des tests de 18 nouveaux modèles ont capturé 1,5 à 2,7 fois plus de mouches à chevreuil que le piège Nzi; les autres modèles de piège étaient aussi efficaces que le piège Nzi. Le modèle optimal qui maintenait des captures égales d'autres mouches piqueuses par rapport au piège Nzi était celui avec une étagère horizontale intérieure en phtalogène et une chicane verticale intérieure en filet. Ce modèle est défini comme « le piège Nzi à deux niveaux ». Chrysops sont entrées principalement par le haut (88 %, 17 spp.), ainsi que Hybomitra Enderlein (94 %, 12 spp.). Tabanus Linnaeus (9 spp.) est entré par les deux entrées. La Tabanus la plus abondante, T. quinquevittatus Wiedemann, est entrée principalement par le fond (70 %), tandis que Stomoxys calcitrans Linnaeus est entré principalement par le haut (92 %).

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Michelle Franklin

References

Acapovi-Yao, G.L., Kohagne, L.T., Tra Bi Ta, D., and Mavoungou, J.F. 2017. Dynamique et dispersion spatiale des Tabanidae dans différents faciès écologiques de Korhogo en Côte d’Ivoire [Dynamic and spatial dispersal of Tabanidae in different ecological facies of Korhogo in Ivory Coast]. Entomologie Faunistique, 70: 1322. Available from https://doi.org/10.25518/2030-6318.3584.CrossRefGoogle Scholar
Baldacchino, F., Desquesnes, M., Duvallet, G., Lysyk, T., and Mihok, S. 2018. Veterinary importance and integrated management of Brachycera flies in dairy farms. In Ecology and control of vector-borne diseases, pests and vector-borne diseases in the livestock industry. Edited by Claire, G., Jérémy, B., Willem, T., and Renate, C.S.. Wageningen Academic Publishers, Wageningen, The Netherlands. Pp. 55–90. https://doi.org/10.3920/978-90-8686-863-6.Google Scholar
Baribeau, L. and Maire, A. 1983a. Abundance and seasonal distribution of Tabanidae in a temperate and in a subarctic locality of Québec. Mosquito News, 43: 135143. Available from https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V43_N2_P135-143.pdf [accessed 23 April 2023].Google Scholar
Baribeau, L. and Maire, A. 1983b. Spatial distribution of Tabanidae (adults and larvae) in two bogs of southern Quebec. Mosquito News, 43: 2429.Google Scholar
Bennett, G.F. and Smith, S.M. 1968. Phosphorous32 for marking Tabanidae (Diptera). Mosquito News, 28: 559569.Google Scholar
Blahó, M., Egri, A., Bahidszki, L., Kriska, G., Hegedus, R., Åkesson, S., and Horváth, G. 2012. Spottier targets are less attractive to tabanid flies: on the tabanid-repellency of spotty fur patterns. PLOS One, 7: e41138. https://doi.org/10.1371/journal.pone.0041138.CrossRefGoogle ScholarPubMed
Bracken, G.K., Hanec, W., and Thorsteinson, A.J. 1962. The orientation of horse flies and deer flies (Tabanidae: Diptera). II. The role of some visual factors in the attractiveness of decoy silhouettes. Canadian Journal of Zoology, 40: 685695. https://doi.org/10.1139/z62-064.CrossRefGoogle Scholar
Cilek, J. 2000. Evaluation of “Tred-Not Deerfly Patches” against host-seeking deer flies (Diptera: Tabanidae) in north Florida. Florida Entomologist, 83: 476479. Available from https://journals.flvc.org/flaent/article/view/74914 [accessed 23 April 2023].CrossRefGoogle Scholar
Cilek, J.E. and Olson, M.A. 2008. Effects of carbon dioxide, an octenol/phenol mixture, and their combination on Tabanidae (Diptera) collections from French 2-tier box traps. Journal of Medical Entomology, 45: 638642. https://doi.org/10.1093/jmedent/45.4.638.CrossRefGoogle ScholarPubMed
de Souza Amorim, D., Brown, B.V., Boscolo, D., Ale-Rocha, R., Moises Alvares-Garcia, D., Balbi, M.I.P.A., et al. 2022. Vertical stratification of insect abundance and species richness in an Amazonian tropical forest. Scientific Reports, 12: 1734. https://doi.org/10.1038/s41598-022-05677-y.CrossRefGoogle Scholar
Dia, M.L., Desquesnes, M., Hamadou, S., Bouyer, J., Yoni, W., and Gouro, A.S. 2008. Tetra trap: evaluation of a small model for catching animal trypanosomosis vectors. Revue de Médecine Vétérinaire, 159: 1721. Available from https://agritrop.cirad.fr/544374/1/document_544374.pdf [accessed 22 October 2023].Google Scholar
Duvallet, G. 2022. A new trap to control stable and black flies, 2022. Arthropod Management Tests, 47: tsac115. https://doi.org/10.1093/amt/tsac115.CrossRefGoogle Scholar
Duvallet, G. and Hogsette, J.A. 2023. Global diversity, distribution, and genetic studies of stable flies (Stomoxys sp.). Diversity, 15: 600. https://doi.org/10.3390/d15050600.CrossRefGoogle Scholar
Egri, Á., Blahó, M., Sándor, A., Kriska, G., Gyurkovszky, M., Farkas, R., and Horváth, G. 2012. New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften, 99: 407416. https://doi.org/10.1007/s00114-012-0916-2.CrossRefGoogle ScholarPubMed
Esterhuizen, J., Rayaisse, J.B., Tirados, I., Mpiana, S., Solano, P., Vale, G.A., et al. 2011. Improving the cost-effectiveness of visual devices for the control of riverine tsetse flies, the major vectors of human African trypanosomiasis. PLOS Neglected Tropical Diseases, 5: e1257. https://doi.org/10.1371/journal.pntd.0001257.CrossRefGoogle ScholarPubMed
Foil, L. 1983. A mark-recapture method for measuring effects of spatial separation of horses on tabanid (Diptera) movement between hosts. Journal of Medical Entomology, 20: 301305. https://doi.org/10.1093/jmedent/20.3.301.CrossRefGoogle ScholarPubMed
Freeman, J.V. 2017. Seasonal abundance of Tabanus calens and other Tabanidae (Diptera) near Snake Mountain, Addison County, Vermont. Northeastern Naturalist, 24: 137151. https://doi.org/10.1656/045.024.0204.CrossRefGoogle Scholar
French, F.E. and Hagan, D.V. 1995. Two-tier box trap catches Chrysops atlanticus and C. fuliginosus (Diptera: Tabanidae) near a Georgia salt marsh. Journal of Medical Entomology, 32: 197200. https://doi.org/10.1093/jmedent/32.2.197.CrossRefGoogle Scholar
Golini, V.I. and Wright, R.E. 1978. Relative abundance and seasonal distribution of Tabanidae (Diptera) near Guelph, Ontario. The Canadian Entomologist, 110: 385398. https://doi.org/10.4039/Ent110385-4.CrossRefGoogle Scholar
Gurba, A., Harraca, V., Perret, J.-L., Casera, S., Donnet, S., and Guerin, P.M. 2012. Three-dimensional flight tracking shows how a visual target alters tsetse fly responses to human breath in a wind tunnel. Physiological Entomology, 37: 250257. https://doi.org/10.1111/j.1365-3032.2012.00840.x.CrossRefGoogle Scholar
Hanec, W. and Bracken, G.K. 1964. Seasonal and geographical distribution of Tabanidae (Diptera) in Manitoba, based on females captured in traps. The Canadian Entomologist, 96: 13621369. https://doi.org/doi.org/10.4039/Ent961362-10.CrossRefGoogle Scholar
Hedges, L.V., Gurevitch, J., and Curtis, P.S. 1999. The meta-analysis of response ratios in experimental ecology. Ecology, 80: 11501156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2.CrossRefGoogle Scholar
Horváth, G., Pereszlényi, Á., Egri, Á., Fritz, B., Guttmann, M., Lemmer, U., et al. 2020. Horsefly reactions to black surfaces: attractiveness to male and female tabanids versus surface tilt angle and temperature. Parasitology Research, 119: 23992409. https://doi.org/10.1007/s00436-020-06702-7.CrossRefGoogle ScholarPubMed
Horváth, G., Szörényi, T., Pereszlényi, Á., Gerics, B., Hegedüs, R., Barta, A., and Åkesson, S. 2017. Why do horseflies need polarisation vision for host detection? Polarisation helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment. Royal Society Open Science, 4: 17 pp. https://doi.org/doi.org/10.1098/rsos.170735.CrossRefGoogle ScholarPubMed
Hribar, L.J., Leprince, D.J., and Foil, L.D. 1992. Feeding sites of some Louisiana Tabanidae (Diptera) on fenvalerate-treated and control cattle. Journal of Economic Entomology, 85: 22792285. https://doi.org/10.1093/jee/85.6.2279.CrossRefGoogle Scholar
Kelly-Hope, L., Paulo, R., Thomas, B., Brito, M., Unnasch, T.R., and Molyneux, D. 2017. Loa loa vectors Chrysops spp.: perspectives on research, distribution, bionomics, and implications for elimination of lymphatic filariasis and onchocerciasis. Parasites & Vectors, 10: 172. https://doi.org/10.1186/s13071-017-2103-y.CrossRefGoogle ScholarPubMed
Koné, N., N’Goran, E.K., Sidibe, I., Kombassere, A.W., and Bouyer, J. 2011. Spatio-temporal distribution of tsetse and other biting flies in the Mouhoun River basin, Burkina Faso. Medical and Veterinary Entomology, 25: 156168. https://doi.org/10.1111/j.1365-2915.2010.00938.x.CrossRefGoogle ScholarPubMed
Lewis, D.J. and Leprince, D.J. 1981. Horse flies and deer flies (Diptera: Tabanidae) feeding on cattle in southwestern Quebec. The Canadian Entomologist, 113: 883886. https://doi.org/10.4039/Ent113883-10.CrossRefGoogle Scholar
Matthysse, J.G., Mock, D.E., and Netherton, H.R. 1974. Seasonal flight period and relative abundance of Tabanidae (Diptera) near Ithaca, New York. Annals of the Entomological Society of America, 67: 158166. https://doi.org/10.1093/aesa/67.2.158.CrossRefGoogle Scholar
McElligott, P.E.K. and Galloway, T.D. 1991a. Daily activity patterns of host-seeking horse flies (Diptera: Tabanidae: Hybomitra spp.) in northern and southern Manitoba. The Canadian Entomologist, 123: 371378. https://doi.org/10.4039/Ent123371-2.CrossRefGoogle Scholar
McElligott, P.E.K. and Galloway, T.D. 1991b. Seasonal distribution and parity of host-seeking horse flies (Diptera: Tabanidae) from a pasture near Seven Sisters, Manitoba. The Canadian Entomologist, 123: 361370. https://doi.org/10.4039/Ent123361-2.CrossRefGoogle Scholar
McElligott, P.E. and McIver, S.B. 1987. Range of attractiveness of carbon dioxide to Hybomitra spp. (Diptera: Tabanidae). Journal of the American Mosquito Control Association, 3: 655656. Available from https://core.ac.uk/download/pdf/21596725.pdf [accessed 23 April 2023].Google ScholarPubMed
Mihok, S. 2002. The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. Bulletin of Entomological Research, 92: 385403. https://doi.org/10.1079/BER2002186.CrossRefGoogle ScholarPubMed
Mihok, S. and Carlson, D.A. 2007. Performance of painted plywood and cloth Nzi traps relative to Manitoba and greenhead traps for tabanids and stable flies. Journal of Economic Entomology, 100: 613618. https://doi.org/10.1093/jee/100.2.613.CrossRefGoogle ScholarPubMed
Mihok, S. and Carlson, D.A. 2021. New materials for improving catches of horseflies (Diptera: Tabanidae) in Nzi traps. Medical and Veterinary Entomology, 35: 580594. https://doi.org/10.1111/mve.12535.CrossRefGoogle ScholarPubMed
Mihok, S., Carlson, D.A., Krafsur, E.S., and Foil, L.D. 2006. Performance of the Nzi and other traps for biting flies in North America. Bulletin of Entomological Research, 96: 387397. https://doi.org/10.1079/BER2006443.CrossRefGoogle ScholarPubMed
Mihok, S., Carlson, D.A., and Ndegwa, P.N. 2007. Tsetse and other biting fly responses to Nzi traps baited with octenol, phenols and acetone. Medical and Veterinary Entomology, 21: 7084. https://doi.org/10.1111/j.1365-2915.2006.00655.x.CrossRefGoogle ScholarPubMed
Mihok, S., Kang’ethe, E.K., and Kamau, G.K. 1995. Trials of traps and attractants for Stomoxys spp. (Diptera: Muscidae). Journal of Medical Entomology, 32: 283289. https://doi.org/10.1093/jmedent/32.3.283.CrossRefGoogle ScholarPubMed
Mihok, S. and Lange, K. 2012. Synergism between ammonia and phenols for Hybomitra tabanids in northern and temperate Canada. Medical and Veterinary Entomology, 26: 282290. https://doi.org/10.1111/j.1365-2915.2011.00999.x.CrossRefGoogle ScholarPubMed
Mihok, S., Sakolsky-Hoopes, G., Morris, B., Dargantes, A., and Mohamed-Ahmed, M.M. 2022. Tests of durable Nzi traps for horseflies (Diptera: Tabanidae) in the United States of America, the Sudan, and the Philippines. The Canadian Entomologist, 154: e34. https://doi.org/10.4039/tce.2022.18.CrossRefGoogle Scholar
Mizell, R.F. III, Mizell, R.F. IV, and Mizell, R.A. 2002. Trolling: a novel trapping method for Chrysops spp. (Diptera:Tabanidae). Florida Entomologist, 85: 356366. Available from https://journals.flvc.org/flaent/article/view/75098/72756 [accessed 23 April 2023].CrossRefGoogle Scholar
Mullens, B.A. and Gerhardt, R.R. 1979. Feeding behavior of some Tennessee Tabanidae. Environmental Entomology, 8: 10471051. https://doi.org/10.1093/ee/8.6.1047.CrossRefGoogle Scholar
Muzari, M.O., Skerratt, L.F., Jones, R.E., and Duran, T.L. 2010. Alighting and feeding behaviour of tabanid flies on horses, kangaroos and pigs. Veterinary Parasitology, 170: 104111. https://doi.org/10.1016/j.vetpar.2010.01.028.CrossRefGoogle ScholarPubMed
Odeniran, P.O. and Ademola, I.O. 2018. Alighting and feeding behavior of trypanosome-transmitting vectors on cattle in Nigeria. Journal of Medical Entomology, 55: 15941601. https://doi.org/10.1093/jme/tjy139.CrossRefGoogle ScholarPubMed
Onju, S., Thaisungnoen, K., Masmeatathip, R., Duvallet, G., and Desquesnes, M. 2020. Comparison of blue cotton and blue polyester fabrics to attract hematophagous flies in cattle farms in Thailand. Journal of Vector Ecology, 45: 262268. https://doi.org/10.1111/jvec.12397.CrossRefGoogle ScholarPubMed
Ossowski, A. and Hunter, F.F. 2000. Distribution patterns, body size, and sugar-feeding habits of two species of Chrysops (Diptera: Tabanidae). The Canadian Entomologist, 132: 213221. https://doi.org/10.4039/Ent132213-2.CrossRefGoogle Scholar
Phelps, R.J. and Holloway, M.T.P. 1990. Alighting sites of female Tabanidae (Diptera) at Rekomitjie, Zimbabwe. Medical and Veterinary Entomology, 4: 349356. https://doi.org/10.1111/j.1365-2915.1990.tb00451.x.CrossRefGoogle ScholarPubMed
Phelps, R.J. and Vale, G.A. 1976. Studies on the local distribution and on the methods of host location of some Rhodesian Tabanidae (Diptera). Journal of the Entomological Society of Southern Africa, 39: 6781.Google Scholar
Pryce, J., Pilotte, N., Menze, B., Sirois, A.R., Zulch, M., Agbor, J.P., et al. 2022. Integrated xenosurveillance of Loa loa, Wuchereria bancrofti, Mansonella perstans and Plasmodium falciparum using mosquito carcasses and faeces: a pilot study in Cameroon. PLOS Neglected Tropical Diseases, 16: e0010868. https://doi.org/10.1371/journal.pntd.0010868.CrossRefGoogle ScholarPubMed
Ringrose, J.L., Abraham, K.F., and Beresford, D.V. 2014. New range records, and a comparison of sweep netting and Malaise trap catches of horse flies and deer flies (Diptera: Tabanidae) in northern Ontario. Journal of the Entomological Society of Ontario, 145: 314. Available from http://www.entsocont.ca/uploads/3/0/2/6/30266933/ringrose_2014_final.pdf [accessed 23 April 2023].Google Scholar
Roberts, R.H. 1972. The effectiveness of several types of Malaise traps for the collection of Tabanidae and Culicidae. Mosquito News, 32: 542547. Available from https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V32_N4_P542-547.pdf [accessed 23 April 2023].Google Scholar
Roberts, R.H. 1975. Relationship between the amount of CO2 and the collection of Tabanidae in Malaise traps. Mosquito News, 35: 150154. Available from https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V35_N2_P150-154.pdf [accessed 23 April 2023].Google Scholar
Roberts, R.H. 1976. The comparative efficiency of six trap types for the collection of Tabanidae (Diptera). Mosquito News, 36: 530535.Google Scholar
Roberts, R.H. 1978. Effect of Malaise trap modifications on collections of Tabanidae. Mosquito News, 38: 382385. Available from https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V38_N3_P382-385.pdf [accessed 23 April 2023].Google Scholar
Santer, R.D., Akanyeti, O., Endler, J.A., Galván, I., and Okal, M.N. 2023. Why are biting flies attracted to blue objects? Proceedings of the Royal Society B: Biological Sciences, 290: 20230463. https://doi.org/10.1098/rspb.2023.0463.CrossRefGoogle ScholarPubMed
Schreck, C.E., Kline, D.L., Williams, D.C., and Tidwell, M.A. 1993. Field evaluations in Malaise and canopy traps of selected targets as attractants for tabanid species (Diptera: Tabanidae). Journal of the American Mosquito Control Association, 9: 182188. Available from https://www.biodiversitylibrary.org/content/part/JAMCA/JAMCA_V09_N2_P182-188.pdf [accessed 23 April 2023].Google ScholarPubMed
Sharif, S., Liénard, E., Duvallet, G., Etienne, L., Mogellaz, C., Grisez, C., et al. 2020. Attractiveness and specificity of different polyethylene blue screens on Stomoxys calcitrans (Diptera: Muscidae). Insects, 11: 575. https://doi.org/10.3390/insects11090575.CrossRefGoogle ScholarPubMed
Sheppard, C. and Wilson, B.H. 1976. Flight range of Tabanidae in a Louisiana bottomland hardwood forest. Environmental Entomology, 5: 752754. https://doi.org/10.1093/ee/5.4.752.CrossRefGoogle Scholar
Sinshaw, A., Abebe, G., Desquesnes, M., and Yoni, W. 2006. Biting flies and Trypanosoma vivax infection in three highland districts bordering Lake Tana, Ethiopia. Veterinary Parasitology, 142: 3546. https://doi.org/10.1016/j.vetpar.2006.06.032.CrossRefGoogle ScholarPubMed
Skvarla, M.J., Larson, J.L., Fisher, J.R., and Dowling, A.P.G. 2021. A review of terrestrial and canopy Malaise traps. Annals of the Entomological Society of America, 114: 2747. https://doi.org/10.1093/aesa/saaa044.CrossRefGoogle Scholar
Smith, S.M., Davies, D.M., and Golini, V.I. 1970. A contribution to the bionomics of the Tabanidae (Diptera) of Algonquin Park, Ontario: seasonal distribution, habitat preferences, and biting records. The Canadian Entomologist, 102: 14611473. https://doi.org/10.4039/Ent1021461-11.CrossRefGoogle Scholar
Snoddy, E.L. 1970. Trapping deer flies with colored weather balloons (Diptera: Tabanidae). Journal of the Georgia Entomological Society, 5: 207209.Google Scholar
Strickler, J.D. and Walker, E.D. 1993. Seasonal abundance and species diversity of adult Tabanidae (Diptera) at Lake Lansing Park–North, Michigan. Great Lakes Entomologist, 26: 107112. Available from https://scholar.valpo.edu/tgle/vol26/iss2/3/ [accessed 23 April 2023].Google Scholar
Tallamy, D.W., Hansens, E.J., and Denno, R.F. 1976. A comparison of Malaise trapping and aerial netting for sampling a horsefly and deerfly community. Environmental Entomology, 5: 788792. https://doi.org/10.1093/ee/5.4.788.CrossRefGoogle Scholar
Teskey, H.J. 1960. Survey of insects affecting livestock in southwestern Ontario. The Canadian Entomologist, 92: 531544. https://doi.org/10.4039/Ent92531-7.CrossRefGoogle Scholar
Thibault, J. and Harper, P.P. 1983. The horse-fly populations (Diptera; Tabanidae) of a forest in the Laurentians: faunal list, phenology, activity and habitats. Naturaliste Canadien, 110: 2736.Google Scholar
Thomson, R.C. and Saunders, D.S. 1986. Relative efficiency of Manitoba traps and adhesive panels for the capture of the common cleg, Haematopota pluvialis (Meigen) (Diptera: Tabanidae). Annals of Tropical Medicine and Parasitology, 80: 345349. https://doi.org/10.1080/00034983.1986.11812027.CrossRefGoogle ScholarPubMed
Thorsteinson, A.J., Bracken, G.K., and Hanec, W. 1965. The orientation behaviour of horse flies and deer flies (Tabanidae, Diptera). III. The use of traps in the study of orientation of tabanids in the field. Entomologia Experimentalis et Applicata, 8: 189192. https://doi.org/10.1111/j.1570-7458.1965.tb00853.x.CrossRefGoogle Scholar
Tunnakundacha, S., Desquesnes, M., and Masmeatathip, R. 2017. Comparison of Vavoua, Malaise and Nzi traps with and without attractants for trapping of Stomoxys spp. (Diptera: Muscidae) and tabanids (Diptera: Tabanidae) on cattle farms. Agriculture and Natural Resources, 51: 319323. https://doi.org/10.1016/j.anres.2017.07.002.CrossRefGoogle Scholar
Vaduva, G. 2020. Do the stripes on three-dimensional models overcome the odour signals in tabanids landing choice? Journal of Biology and Life Science, 11: 220238. https://doi.org/10.5296/jbls.v11i2.17807.CrossRefGoogle Scholar
Vale, G.A. 1993. Visual responses of tsetse flies (Diptera: Glossinidae) to odour-baited targets. Bulletin of Entomological Research, 83: 277289. https://doi.org/10.1017/S0007485300034775.CrossRefGoogle Scholar
Vezsenyi, K.A., Skevington, J., Moran, K., Young, A., Locke, M., Schaefer, J., and Beresford, D. 2019. Sampling Syrphidae using Malaise and Nzi traps on Akimiski Island, Nunavut. Journal of the Entomological Society of Ontario, 150: 1126. Available from https://journal.lib.uoguelph.ca/index.php/eso/article/view/5013 [accessed 23 April 2023].Google Scholar
Vizza, K.M., Beresford, D.V., Hung, K.-L.J., Schaefer, J.A., and Macivor, J.S. 2021. Wild bees (Hymenoptera: Apoidea) from remote surveys in northern Ontario and Akimiski Island, Nunavut, including four new regional records. Journal of the Entomological Society of Ontario, 152: 5780. Available from https://journal.lib.uoguelph.ca/index.php/eso/article/view/6501 [accessed 23 April 2023].Google Scholar
Wilson, B.H. and Richardson, C.G. 1970. Attraction of deer flies (Chrysops) (Diptera: Tabanidae) to traps baited with dry ice under field conditions in Louisiana. Journal of Medical Entomology, 7: 625. https://doi.org/10.1093/jmedent/7.5.625.CrossRefGoogle ScholarPubMed
Zhu, J.J., Roh, G.-H., Asamoto, Y., Bizati, K., Liu, J.-C., Lehmann, A., et al. 2021. Development and first evaluation of an attractant impregnated adhesive tape against blood-sucking flies. Insect Science, 29. https://doi.org/10.1111/1744-7917.12952.CrossRefGoogle Scholar
Supplementary material: File

Mihok supplementary material

Mihok supplementary material

Download Mihok supplementary material(File)
File 43.3 MB