Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T22:27:09.067Z Has data issue: false hasContentIssue false

Timing of egg hatch by early-season codling moth (Lepidoptera: Tortricidae) predicted by moth catch in pear ester- and codlemone-baited traps

Published online by Cambridge University Press:  02 April 2012

A.L. Knight*
Affiliation:
Yakima Agricultural Research Laboratory, USDA–ARS, 5230 Konnowac Pass Road, Wapato, Washington 98951, United States of America
D.M. Light
Affiliation:
Western Regional Research Center, USDA–ARS, 800 Buchanan Street, Albany, California 94710, United States of America
*
1 Corresponding author (e-mail: aknight@yarl.ars.usda.gov).

Abstract

The use of the timing of moth catch in traps to predict the start of egg hatch by first-generation codling moth, Cydia pomonella (L.), in apple, Malus domestica Borkh. (Rosaceae), was evaluated with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E,E)-8,10-dodecadien-1-ol (codlemone) lures. Two sets of paired traps baited with either lure were placed in each of seven orchards and checked daily during the spring flight in 2000 and 2001. Rearing of field-collected eggs and sampling of fruit for injury were used to estimate the date of first egg hatch. Moth catch in traps baited with codlemone and pear ester occurred approximately 144 and 105 degree-days prior to the start of egg hatch, respectively. The effectiveness of using the timing of sustained moth catch in traps baited with these lures as a biological reference point (Biofix) to predict the start of egg hatch when traps were checked every 3–4 d was evaluated in 11 orchards from 2000 to 2002. The calendar date for the start of sustained moth catch in traps baited with either lure varied widely among orchards and years. Significant differences in mean cumulative degree-days from first sustained moth catch until egg hatch were found among male moth catch in codlemone-baited traps and total and female moth catch in pear ester-baited traps. Adjusting the Biofix based on daily temperature thresholds significantly changed the cumulative degree-days required until egg hatch only for female moth catch. No significant differences were found in the accuracy of predicting the date of egg hatch using either the codlemone or pear ester lure or by adjusting the Biofix date using daily temperature thresholds. The cumulative degree-day totals required from Biofix until egg hatch had the lowest variability when the Biofix was (i) based on the sustained catch of female moths in a pear ester-baited trap and (ii) adjusted with a temperature threshold for moth activity.

Résumé

Nous avons évalué l'utilisation de la phénologie des captures de papillons dans les pièges pour prédire le début de l'éclosion des oeufs chez les carpocapses de la pomme, Cydia pomonella (L.), de première génération sur le pommier, Malus domestica Borkh. (Rosaceae), à l'aide d'appâts d'éthyl(2E,4Z)-2-4-décadiènoate (ester de poire) et de (E,E)-8,10-dodécadièn-1-ol (codlemone). Nous avons placé deux séries de pièges appariés munis de l'un ou de l'autre appât dans sept vergers et les avons relevés tous les jours durant la période de vol du printemps en 2000 et 2001. L'incubation d'oeufs récoltés sur le terrain et l'inventaire des blessures sur les fruits ont servi à déterminer la date de la première éclosion. Les captures des papillons dans les pièges appâtés de codlemone et d'ester de poire commencent respectivement environ 144 et 105 degrés-jours avant le début de l'éclosion des oeufs. Nous avons ensuite vérifié dans 11 vergers de 2000 à 2002 l'efficacité de l'utilisation de la période de captures soutenues des papillons dans les pièges munis de ces appâts et relevés tous les 3-4 j comme point de référence biologique (Biofix) pour prédire le début de l'éclosion des oeufs. La date au calendrier du début des captures soutenues de papillons dans les pièges munis de ces appâts varie considérablement d'un verger à un autre et d'une année à l'autre. Il existe des différences significatives dans le nombre moyen cumulé de degrés-jours entre le début de la capture soutenue de papillons et l'éclosion des oeufs dans le cas des captures de mâles dans les pièges appâtés de codlemone et les cas des captures totales et des captures de femelles dans les pièges appâtés d'ester de poire. L'ajustement des Biofix d'après les seuils quotidiens de température change significativement le nombre de degrés-jours requis pour l'éclosion des oeufs seulement dans le cas des captures des papillons femelles. Il n'existe pas de différence significative dans la précision de la prédiction de la date de l'éclosion des oeufs par l'utilisation des appâts de codlemone ou d'ester de poire ou par l'ajustement de la date Biofix à l'aide des seuils de température. La variabilité la plus faible parmi les types de Biofix se retrouve dans le nombre cumulatif total de degrés-jours requis jusqu'à l'éclosion des oeufs par un Biofix (ajusté à un seuil de température relié à l'activité des papillons) déterminé d'après les captures des femelles dans un piège appâté d'ester de poire.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology, 5: 388396.CrossRefGoogle Scholar
Analytical Software. 2003. User's manual: Statistix8. Analytical Software, Tallahassee, Florida.Google Scholar
Batiste, W.C., Olson, W.H., and Berlowitz, A. 1973. Codling moth: influence of temperature and daylight intensity on the periodicity of daily flight in the field. Journal of Economic Entomology, 66: 883892.CrossRefGoogle Scholar
Beers, E.H., and Brunner, J.F. 1992. Implementation of the codling moth phenology model on apples in Washington State, USA. Acta Phytopathologica et Entomologica Hungarica, 27: 97102.Google Scholar
Beers, E.H., Brunner, J.F., Willett, M.J., and Warner, G.M. 1993. Orchard pest management: a resource book for the Pacific Northwest. Good Fruit Grower, Yakima, Washington.Google Scholar
Blago, N. 1992. “BUGOFF 2 G” the adaptation of a Californian model for the codling moth to the Central European conditions. Acta Phytopathologica et Entomologica Hungarica, 27: 119125.Google Scholar
Croft, B.A., and Knight, A.L. 1983. Evaluation of the PETE phenology modeling system for integrated pest management of deciduous tree fruit species. Bulletin of the Entomological Society of America, 29: 3742.CrossRefGoogle Scholar
Croft, B.A., and Riedl, H.W. 1991. Chemical control and resistance to pesticides of the codling moth. In Tortricoid pests. Edited by van der Geest, L.P.S. and Evenhuis, H.H.. Elsevier, Amsterdam. pp. 371387.Google Scholar
Glenn, P.A. 1922. Relation of temperature to development of codling moth. Journal of Economic Entomology, 15: 193198.CrossRefGoogle Scholar
Hagley, E.A.C. 1973. Timing sprays for codling moth (Lepidoptera: Olethreutidae) control on apple. The Canadian Entomologist, 105: 10851089.CrossRefGoogle Scholar
Howell, J.F. 1991. Reproductive biology. In Tortricoid pests. Edited by Geest, L.P.S. van der and Evenhuis, H.H.. Elsevier, Amsterdam. pp. 157174.Google Scholar
Knight, A. 1995. The impact of codling moth (Lepidoptera: Tortricidae) mating disruption on apple pest management in Yakima Valley, Washington. Journal of the Entomological Society of British Columbia, 92: 2938.Google Scholar
Knight, A., and Weiss, M. 1996. Improving the codling moth Biofix-based spray timing model. Proceedings of the Washington State Horticultural Association, 92: 209210.Google Scholar
Knight, A.L. 2004. Development and testing of a new female-based phenology model for codling moth. In Proceedings of the 78th Western Orchard Pest and Disease Management Conference, Portland, Oregon, 14–16 January 2004. Edited by Dunley, J.. Washington State University, Wenatchee, Washington. p. 15.Google Scholar
Knight, A.L., and Light, D.M. 2005 a. Factors affecting the differential capture of male and female codling moth (Lepidoptera: Tortricidae) in traps baited with ethyl (E, Z)-2,4-decadienoate. Environmental Entomology, 34: 11611169.Google Scholar
Knight, A.L., and Light, D.M. 2005 b. Dose-response of codling moth (Lepidoptera: Tortricidae) to ethyl (E, Z )-2,4-decadienoate in apple orchards treated with sex pheromone dispensers. Environmental Entomology, 34: 604609.CrossRefGoogle Scholar
Knight, A.L., and Light, D.M. 2005C. Seasonal flight patterns of codling moth (Lepidoptera: Tortricidae) monitored with pear ester and codlemone-baited traps in sex pheromone-treated apple orchards. Environmental Entomology, 34: 10281035.CrossRefGoogle Scholar
Light, D.M., Knight, A.L., Henrick, C.A., Rajapaska, D., Lingren, B., Dickens, J.C., Reynolds, K.M., Buttery, R.G., Merrill, G., Roitman, J., and Campbell, B.C. 2001. A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften, 88: 333338.CrossRefGoogle ScholarPubMed
Pickel, C.P., Bethell, R.S., and Coates, W.W. 1986. Codling moth management using degree days. Publication 4, University of California Statewide IPM Project, Berkeley, California.Google Scholar
Pitcairn, M.J., Zalom, F.G., and Bentley, W.J. 1990. Weather factors influencing capture of Cydia pomonella (Lepidoptera: Tortricidae) in pheromone traps during overwintering flight in California. Environmental Entomology, 19: 12531258.CrossRefGoogle Scholar
Putnam, W.L. 1963. The codling moth, Carpocapsa pomonella (L.) (Lepidoptera: Tortricidae): a review with special reference to Ontario. Proceedings of the Entomological Society of Ontario, 93: 2260.Google Scholar
Richardson, J.C., Jorgensen, C.D., and Croft, B.A. 1982. Embryogenesis of the codling moth, Laspeyresia pomonella: use in validating phenology models. Annals of the Entomological Society of America, 75: 201209.CrossRefGoogle Scholar
Riedl, H., Croft, B.A., and Howitt, A.J. 1976. Forecasting codling moth phenology based on pheromone trap catches and physiological time models. The Canadian Entomologist, 108: 449460.CrossRefGoogle Scholar
Riedl, H., Howell, J.F., McNally, P.J., and Westigard, P.H. 1986. Codling moth management: use and standardization of pheromone trapping systems. Bulletin 1918, University of California Division of Agriculture and Natural Resources, Oakland, California.Google Scholar
Shelford, V.E. 1927. An experimental investigation of the relations of the codling moth to weather and climate. Illinois Natural History Survey Bulletin, 16(5): 311440.CrossRefGoogle Scholar
Weissling, T.J., and Knight, A.L. 1994. Passive trap for monitoring codling moth (Lepidoptera: Tortricidae) flight activity. Journal of Economic Entomology, 87: 103107.CrossRefGoogle Scholar
Walston, A., and Riedl, H. 2005. Codling moth control in Oregon's Hood River Valley: is it resistance, poor timing, or less effective control programs. In Proceedings of the 79th Western Orchard Pest and Disease Management Conference, Portland, Oregon, 5–7 January 2005. Edited by Dunley, J.. Washington State University, Wenatchee, Washington. p. 11.Google Scholar
Zoller, B.G. 2001. Oviposition preference of codling moth between cut and uncut fruit of Bartlett, Bosc, and Beurre Hardy cultivars in the Sacramento Valley. In Proceedings of the 75th Western Orchard Pest and Disease Management Conference, Portland, Oregon, 10–12 January 2002. Edited by Dunley, J.. Washington Stat University, Wenatchee, Washington. pp. 56.Google Scholar