Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-06T04:53:05.516Z Has data issue: false hasContentIssue false

THEORETICAL OPTIMIZATION OF BACILLUS THURINGIENSIS BERLINER FOR CONTROL OF THE EASTERN SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA CLEM. (LEPIDOPTERA: TORTRICIDAE): ESTIMATES OF LETHAL AND SUBLETHAL DOSE REQUIREMENTS, PRODUCT POTENCY, AND EFFECTIVE DROPLET SIZES

Published online by Cambridge University Press:  31 May 2012

Kees van Frankenhuyzen
Affiliation:
Forestry Canada, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Nicholas J. Payne
Affiliation:
Forestry Canada, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

We present calculations of droplet sizes and product potencies that are theoretically required to deliver a lethal dose of Bacillus thuringiensis in one droplet to larvae of the eastern spruce budworm in aerial spray applications. The calculations are based on estimates of the dose required for 50% and 95% mortality [4.3 and 26.9 International Units (IU), respectively] and of the lowest dose that caused discernable feeding inhibition (0.5 IU) in force-feeding assays with sixth-instar larvae. For products containing 12.7–16.9 billion IU (BIU) per litre, the most widely used potency range, a 150- to 160-μm droplet is needed to deliver an LD95 and an 80- to 90-μm droplet to deliver an LD50, whereas droplets down to 40 μm are expected to cause extensive feeding inhibition. Our calculations suggest that current application prescriptions result in the delivery of a marginally effective dose to the target foliage and that budworm larvae have to ingest multiple droplets to obtain a lethal dose, a process that is thought to contribute to inconsistent spray efficacy. We predict that dose acquisition can be maximized by increasing product potency to 95 BIU/L, which would enable larvae to acquire a lethal dose by ingestion of only one or two droplets in the size range that is most commonly encountered on coniferous foliage (≤ 80 µm) after aerial application.

Résumé

Nous avons calculé la taille des gouttelettes et la concentration de produit qui sont théoriquement requises pour que la dose de Bacillus thuringiensis contenue dans une gouttelette soit létale à des larves de Tordeuses des bourgeons de l’épinette au cours de vaporisations aériennes. Les calculs tiennent compte de l’estimation des doses requises pour causer 50% et 95% de mortalité [4,3 et 26,9 unités internationales (IU)] et de l’estimation de la dose la plus faible qui puisse produire une inhibition décelable de l’alimentation (0,5 IU) au cours d’expériences de gavage chez des larves de sixième stade. Dans le cas de produits contenant 12,7–16,9 milliards d’IU (BIU) par litre, l’étendue des concentrations les plus utilisées, il faut une gouttelette de 150–160 μm pour causer une mortalité de LD95 et une gouttelette de 80–90 μm pour causer une mortalité de LD50 et des gouttelettes de 40 μm doivent théoriquement entraîner une inhibition importante de l’alimentation. Nos calculs révèlent que les conditions de vaporisation de feuillage utilisées couramment entraînent l’application de doses tout juste efficaces et indiquent donc que chaque larve doit ingérer plusieurs gouttelettes du produit pour mourir, un processus qui explique sans doute les variations dans l’efficacité des vaporisations. Nous croyons que la dose administrée peut être optimisée en augmentant la concentration du produit à 95 BIU/L, ce qui rendrait létale l’ingestion de une ou deux gouttelettes dans la gamme des tailles ordinairement rencontrées (≤ 80 µm) après la vaporisation aérienne de conifères.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, J.W., and Eckblad, R.B.. 1978. Deposition of insecticide drops on coniferous foliage. Transactions of the American Society of Agricultural Engineering 21: 438441.CrossRefGoogle Scholar
Beegle, C.C., Couch, T.L., Alls, R.T., Versoi, P.L., and Lee, B.L.. 1986. Standardization of HD-I-S-1980: U.S. standard for assay of lepidopterous-active Bacillus thuringiensis. Bulletin of the Entomological Society of America 32: 4445.CrossRefGoogle Scholar
Carter, N.E. 1991. Efficacy of Bacillus thuringiensis in New Brunswick, 1988–1990. pp. 113116in Preprints of the 72nd Annual Meeting, Woodlands Section, Canadian Pulp and Paper Association, Montreal, P.Q.Google Scholar
Fast, P.G., and Dimond, J.B.. 1984. Susceptibility of larval instars of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), to Bacillus thuringiensis. The Canadian Entomologist 116: 131137.CrossRefGoogle Scholar
Fast, P.G., and Régnière, J.. 1984. Effect of exposure time to Bacillus thuringiensis on mortality and recovery of the spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist 116: 123130.CrossRefGoogle Scholar
Fleming, R.A., and van Frankenhuyzen, K.. 1992. Forecasting the efficacy of operational Bacillus thuringiensis Berliner applications against spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). The Canadian Entomologist 124: 11011113.CrossRefGoogle Scholar
Himel, C.M. 1969. The optimum size for insecticide spray droplets. Journal of Economic Entomology 62: 919925.CrossRefGoogle Scholar
Irving, H.J., Kettela, E.G., and Picot, J.J.C.. 1991. Technology transfer—an example. pp. 19in Marsters, G.F., and Barry, J. (Eds.), Proceedings of the Associate Committee on Agricultural and Forestry Aviation Symposium and Trade Show, October 11, 1990, Winnipeg. National Research Council of Canada, Ottawa, Ont.Google Scholar
Lambert, M. 1987. Quantification of spray deposits in experimental and operational spraying operations. pp. 125129in Green, G.W. (Ed.), Proceedings of a Symposium on the Aerial Application of Pesticides in Forestry. Associate Committee on Agricultural and Forestry Aviation Technical Note 18, National Research Council No. 29197.Google Scholar
Litchfield, J.T., and Wilcoxon, F.. 1949. A simplified method of evaluating dose–effect experiments. Journal of Pharmacology and Experimental Therapeutics 96: 99113.Google ScholarPubMed
Morris, O.N. 1983. Protection of Bacillus thuringiensis from inactivation by sunlight. The Canadian Entomologist 115: 12151227.CrossRefGoogle Scholar
Picot, J.J.C., Kristmanson, D.D., and Basak-Brown, N.. 1986. Canopy deposit and off-target drift in forestry aerial spraying: The effects of operational parameters. Transactions of the American Society of Agricultural Engineers 29: 9096.CrossRefGoogle Scholar
Retnakaran, A., Lauzon, H., and Fast, P.G.. 1983. Bacillus thuringiensis induced anorexia in the spruce budworm, Choristoneura fumiferana. Entomologia Experimentalis et Applicata 34: 233239.CrossRefGoogle Scholar
Russell, R.M., Robertson, J.L., and Savin, S.E.. 1977. POLO: A new computer program for probit analysis. Bulletin of the Entomological Society of America 23: 209213.CrossRefGoogle Scholar
van Frankenhuyzen, K. 1990 a. Development and current status of Bacillus thuringiensis for control of defoliating forest insects. The Forestry Chronicle 56: 498507.CrossRefGoogle Scholar
van Frankenhuyzen, K. 1990 b. Effect of temperature and exposure time on toxicity of Bacillus thuringiensis spray deposits to spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). The Canadian Entomologist 122: 6975.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Nystrom, C.W.. 1987. Effect of temperature on mortality and recovery of spruce budworm (Lepidoptera: Tortricidae) exposed to Bacillus thuringiensis Berliner. The Canadian Entomologist 119: 941954.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Nystrom, C.W.. 1989. Residual toxicity of a high-potency formulation of Bacillus thuringiensis to spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology 82: 868872.CrossRefGoogle Scholar
Van Vliet, M., and Picot, J.J.C.. 1987. Drop spectrum characterization for the Micronair AU4000 aerial spray atomizer. Atomisation and Spray Technology 3: 123134.Google Scholar
West, R.J., Raske, A.G., Retnakaran, A., and Lim, K.P.. 1987. Efficacy of various Bacillus thuringiensis Berliner var. kurstaki formulations and dosages in the field against the hemlock looper, Lambdina fiscellaria fiscellaria (Guen.) (Lepidoptera: Geometridae), in Newfoundland. The Canadian Entomologist 119: 449458.CrossRefGoogle Scholar