Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-19T15:18:21.105Z Has data issue: false hasContentIssue false

Temporal variations in abiotic conditions exert little influence on diurnal activity of late-instar spruce budworm larvae on balsam fir

Published online by Cambridge University Press:  09 May 2012

S.E. Holmes
Affiliation:
Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, Fredericton, New Brunswick E3G 5P7, Canada
E.G. Kettela
Affiliation:
Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, Fredericton, New Brunswick E3G 5P7, Canada
P.C. Nigam
Affiliation:
Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, Fredericton, New Brunswick E3G 5P7, Canada; and Research Scientist (retired), Spruce Budworm Behavior and Control, Canadian Forest Service – Atlantic Forestry Centre, New Brunswick, Canada
S.B. Heard
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
R.C. Johns*
Affiliation:
Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, P.O. Box 4000, Fredericton, New Brunswick E3G 5P7, Canada; and Population Ecology Group, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
*
1Corresponding author (e-mail: rjohns@nrcan.gc.ca).

Abstract

Spruce budworm, Choristoneurafumiferana (Clemens) (Lepidoptera: Tortricidae), larvae can cause extensive defoliation in balsam fir (Abies balsamea [Linnaeus] Miller) and exhibit high temporal and spatial variability in individual behaviour. We gathered field data to determine the influence of daily and hourly variation in abiotic conditions on daytime activity patterns of late-instar budworm larvae on balsam fir. In both years of our study, less than 10% of larvae were observed feeding during the daytime. Most larvae observed were either resting, spinning silk, or roaming, although the proportion of individuals engaged in each activity varied between years, with more larvae in the first year roaming (48%) and in the second year either resting (38%) or spinning silk (42%). Daily and hourly variation in abiotic conditions had a limited influence on activity patterns. Our results indicate that in nature, mid- to late-instar budworm larvae maintain fairly consistent activity patterns across a wide range of abiotic conditions. We suggest that site-specific conditions such as variation in host-plant quality and/or budworm population density may be more important than weather in determining the relative frequencies of different larval activities in space and time.

Résumé

Les larves de la tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae), peuvent causer une sérieuse défoliation chez le sapin baumier et font montre d'une importante variation temporelle et spatiale dans leur comportement individuel. Nous avons accumulé des données de terrain afin de déterminer l'influence de la variation journalière et horaire des conditions abiotiques sur les patrons d'activité journalière des stades avancés des tordeuses sur le sapin. Durant les deux années de notre étude, moins de 10% des larves ont été vues en train se nourrir durant la journée. La plupart des larves se reposaient, tissaient de la soie ou erraient, bien que la proportion des individus occupés à chacune de ces activités ait varié d'une année à l'autre; la première année, il y avait plus de larves à errer (48%) et la seconde année à se reposer (38%) ou à tisser de la soie (42%). La variation journalière et horaire des conditions abiotiques avait une influence limitée sur les patrons d'activité. Nos résultats indiquent qu'en nature les larves de tordeuses des stades moyens à avancés maintiennent des patrons d'activité assez constants sur une gamme étendue de conditions abiotiques. Nous croyons que les conditions spécifiques au site, telles que la variation de la qualité de la plante-hôte et(ou) la densité de la population de tordeuses, peuvent être plus importantes que les conditions climatiques pour déterminer les fréquences relatives des différentes activités larvaires dans l'espace et le temps.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, A.C. 2001. Regression diagnostics for binomial data from the forward search. The Statistician, 50: 6378.CrossRefGoogle Scholar
Bardoloi, S.Hazarika, L.K. 1994. Body temperature and thermoregulation of Antheraea assama larvae. Entomologia Experimentalis et Applicata, 72: 207217.Google Scholar
Bean, J.L. 1961. Predicting emergence of second-instar spruce budworm larvae from hibernation under field conditions in Minnesota. Annals of the Entomological Society of America, 54: 175177.CrossRefGoogle Scholar
Berridge, M.J., Treherne, J.E., Wigglesworth, V.B. 1983. Advances in insect physiology, vol. 17. Academic Press, New York.Google Scholar
Blais, J.R. 1952. The relationship of the spruce budworm (Christoneura fumiferana, Clem.) to the flowering condition of balsam fir (Abies balsamea (L.) Mill.). Canadian Journal of Zoology, 30: 129.CrossRefGoogle Scholar
Edwards, D.K. 1964. Activity rhythms of lepidopterous defoliators. II. Halisidota argentata Pack. (Arctiidae), and Nephytia phantasmaria Stkr. (Geometridae). Canadian Journal of Zoology, 42: 939958.CrossRefGoogle Scholar
Fitzgerald, T.D., Casey, T.M., Joos, B. 1988. Daily foraging schedule of field colonies of the eastern tent caterpillar Malacosoma americanum. Oecologia, 76: 574578.CrossRefGoogle ScholarPubMed
Joos, B. 1992. Adaptations for locomotion at low body temperatures in eastern tent caterpillars, Malacosoma americanum. Physiological Zoology, 65: 11481161.CrossRefGoogle Scholar
Lance, D.R., Elkinton, J.S., Schwalbe, C.P. 1986. Feeding rhythms of gypsy moth larvae: effect of food quality during outbreaks. Ecology, 67: 16501654.Google Scholar
Leonard, D.E. 1970. Feeding rhythm in larvae of the gypsy moth. Journal of Economic Entomology, 63: 14541457.CrossRefGoogle Scholar
Lysyk, T.J. 1989. Stochastic model of eastern spruce budworm (Lepidoptera: Tortricidae) phenology on white spruce and balsam fir. Journal of Economic Entomology, 82: 11611168.Google Scholar
McGugan, B.M. 1954. Needle-mining habits and larval instars of the spruce budworm. The Canadian Entomologist, 86: 439454.Google Scholar
Nigam, P.C. 1995. Response of spruce budworm, Choristoneura fumiferana, larvae to insecticides. In Forest insect pests in Canada . Edited by J.A. Armstrong and W.G.H. Ives. Natural Resources Canada, Ottawa. pp. 107112.Google Scholar
Quiring, D.T. 1994. Diel activity pattern of a nocturnal moth, Zeiraphera canadensis, in nature. Entomologia Experimentalis et Applicata, 73: 111120.CrossRefGoogle Scholar
Raubenheimer, D.Browne, L.B. 2000. Developmental changes in the patterns of feeding in fourth- and fifth-instar Helicoverpa armigera caterpillars. Physiological Entomology, 25: 390399.Google Scholar
Régnière, J. 1987. Temperature-dependent development of eggs and larvae of Chrostoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) and simulation of its seasonal history. The Canadian Entomologist, 119: 717728.CrossRefGoogle Scholar
Reichenbach, N.G.Stairs, G.R. 1984. Response of the western spruce budworm (Lepidoptera: Tortricidae) to temperature and humidity: developmental rates and survivorship. Environmental Entomology, 13: 611618.CrossRefGoogle Scholar
Retnakaran, A. 1983. Spectrophotometric determination of larval ingestion rates in the spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist, 115: 3140.CrossRefGoogle Scholar
Ruf, C.Fieldler, K. 2002. Tent-based thermoregulation in social caterpillars of Eriogaster lanestris (Lepidoptera: Lasiocampidae): behavioral mechanisms and physical features of the tent. Journal of Thermal Biology, 27: 493501.Google Scholar
Sanders, C.J. 1975. Factors affecting adult emergence and mating behavior of the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 107: 967977.CrossRefGoogle Scholar
SAS Institute. 1999. The SAS system version 8 for Windows. SAS Institute, Cary, North Carolina.Google Scholar
Shiojiri, K., Ozawa, R., Takabayashi, J. 2006. Plant volatiles, rather than light, determine the nocturnal behavior of a caterpillar. PLoS Biology, 4: 10441047.CrossRefGoogle ScholarPubMed
Speight, G.C. 1987. The effects of weather on spruce budworm activity. B.Sc.F. Honours thesis, University of New Brunswick, Fredericton, New Brunswick, Canada.Google Scholar
Thornhill, R.Alcock, J. 1983. The evolution of insect mating systems. Harvard University Press, Cambridge.CrossRefGoogle Scholar
van Frankenhuzen, K.Espinasse, S. 2010. Observations on the feeding behaviour of late-instar larvae of Chrostoneura fumiferana. The Canadian Entomologist, 142: 388392.CrossRefGoogle Scholar
Wellington, W.G. 1950a. Effects of radiation on the temperatures of insects and habitats. Scientific Agriculture, 30: 209234.Google Scholar
Wellington, W.G. 1950b. Variations in silk spinning and locomotor activities of larvae of the spruce budworm, Choristoneura fumiferana (Clem.), at different rates of evaporation. Transactions of the Royal Society of Canada, 44: 89101.Google Scholar
Wellington, W.G.Cameron, J.M. 1947. Investigations on meteorological and other physical factors. Bi-monthly Progress Report, Forest Insect Investigation, Agriculture Canada, 3: 2.Google Scholar