Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-03T02:31:29.588Z Has data issue: false hasContentIssue false

TEMPERATURE-DEPENDENT DEVELOPMENT OF EGGS AND LARVAE OF WINTHEMIA FUMIFERANAE TOTH. (DIPTERA: TACHINIDAE), A LARVAL–PUPAL PARASITOID OF THE SPRUCE BUDWORM (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Christian Hébert
Affiliation:
Département de biologie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4
Conrad Cloutier
Affiliation:
Département de biologie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4

Abstract

Relationships between temperature and development rates of eggs and larvae of Winthemia fumiferanae Toth. were experimentally determined, using the spruce budworm as host. Hatching of parasitoid eggs was triggered by host pupation. The median time required to complete egg development at different temperatures was estimated from distributions of percentage development success of the parasitoid over time between egg deposition and host pupation. For parasitoid eggs that had sufficient time to hatch, detachment from the host before pupation was the most important cause of mortality at 15 °C or higher, but was negligible below this temperature. A curvilinear model describing egg development rate as a function of temperature was used to simulate the development of W. fumiferanae eggs in the field. The relationship between larval development rate and temperature also was modelled, and the variability described. Simulations initiated by host pupation-driven egg hatching, and terminated with prepupal drop to the ground, are presented and discussed with respect to the appropriateness of using host pupation as an indicator of parasitoid egg hatching in the field.

Résumé

Les relations entre la température et les taux de développement des oeufs et des larves de Winthemia fumiferanae Toth. ont été établies expérimentalement en utilisant la tordeuse des bourgeons de l’épinette comme hôte. L’éclosion des oeufs du parasitoïde était initiée par la pupaison de l’hôte. Le temps médian requis pour compléter le développement de l’oeuf à différentes températures a été évalué à partir de distributions du pourcentage de succès du parasitoïde en fonction du temps écoulé entre l’oviposition et la pupaison de l’hôte. Le décollement de l’oeuf avant la pupaison de l’hôte s’est avéré la cause la plus importante de mortalité des parasitoïdes ayant eu assez de temps pour éclore à 15 °C ou plus, mais était négligeable sous cette température. Un modèle curvilinéaire décrivant le taux de développement des oeufs en fonction de la température a permis de simuler le développement des oeufs de W. fumiferanae en milieu naturel. La relation entre le taux de développement des larves et la température a été modélisée de façon similaire et la variabilité décrite. Des simulations, initiées par la pupaison de l’hôte comme indice de l’éclosion des oeufs et terminées par la tombée au sol des pré-pupes, sont présentées et discutées en rapport avec la pertinence d’utiliser la pupaison de l’hôte comme indice de l’éclosion des oeufs du parasitoïde en milieu naturel.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, H.W. 1925. Biology of the red-tailed tachina-fly, Winthemia quadripustulata Fabr. Miss. Agric. Exp. Sta. Tech. Bull. 12. 32 pp.Google Scholar
Bean, J.L. 1958. The use of larvaevorid maggot drop in measuring trends in spruce budworm populations. Ann. ent. Soc. Am. 51: 400403.Google Scholar
Blais, J.R. 1960. Spruce budworm parasite investigations in the Lower St. Lawrence and Gaspé regions of Quebec. Can. Ent. 92: 384396.CrossRefGoogle Scholar
Blais, J.R. 1965. Parasite studies in two residual spruce budworm (Choristoneura fumiferana (Clem.)) outbreaks in Quebec. Can. Ent. 97: 129136.Google Scholar
Coppel, H.C., and Smith, B.C.. 1957. Studies on dipterous parasites of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). V. Omotoma fumiferanae (Tot.) (Diptera: Tachnidae). Can. J. Zool. 35: 581592.Google Scholar
Danks, H.V. 1975. Factors determining levels of parasitism by Winthemia rufopicta (Diptera: Tachinidae), with particular reference to Heliothis spp. (Lepidoptera: Noctuidae) as hosts. Can. Ent. 107: 655684.Google Scholar
DeLoach, C.J., and Rabb, R.L.. 1971. Life history of Winthemia manducae (Diptera: Tachinidae), a parasite of the tobacco hornworm. Ann. ent. Soc. Am. 64: 399409.Google Scholar
Dixon, W.J., Brown, M.B., Engelman, L., Frane, J.N., Hill, M.A., Jennrich, R.I., and Toporek, J.D.. 1985. BMDP Statistical Software. 1985 printing. University of California Press, Berkeley, CA. 733 pp.Google Scholar
Drummond, F.A., Van, R.G. Driesche, and Logan, P.A.. 1985. Model for the temperature-dependent emergence of overwintering Phyllonorycter crataegella (Clemens) (Lepidoptera: Gracillariidae), and its parasitoid, Sympiesis marylandensis Girault (Hymenoptera: Eulophidae). Environ. Ent. 14: 305311.Google Scholar
Hébert, C., Cloutier, C., Régnière, J., and Perry, D.F.. 1989. Seasonal biology of Winthemia fumiferanae Toth. (Diptera: Tachinidae), a larval–pupal parasitoid of the spruce budworm (Lepidoptera: Tortricidae). Can. J. Zool. 67: 23842391.CrossRefGoogle Scholar
Herbert, H.J., and McRae, K.B.. 1983. Effect of temperature on the emergence of overwintering Phyllonorycter blancardella (Lepidoptera: Gracillariidae) and its parasite Apanteles ornigis (Hymenoptera: Braconidae) in Nova Scotia. Can. Ent. 115: 12031208.Google Scholar
Hudes, E.S., and Shoemaker, C.A.. 1988. Inferential method for modeling insect phenology and its application to the spruce budworm (Lepidoptera: Tortricidae). Environ. Ent. 17: 97108.Google Scholar
Lawrence, R.K., Houseweart, M.W., Jennings, D.T., Southard, S.G., and Halteman, W.A.. 1985. Development rates of Trichogramma minutum (Hymenoptera: Trichogrammatidae) and implications for timing augmentative releases for suppression of egg populations of Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 117: 557563.Google Scholar
Lentz, G.L., and Pedigo, L.P.. 1974. Life history phenomena of Rogas nolophanae and Winthemia sinuata, parasites of the green cloverworm. Ann. ent. Soc. Am. 67: 678680.Google Scholar
Lethiecq, J.-L., and Régnière, J.. 1988. Comparative description of the physical characteristics and vegetation of six sites used by the Canadian Forestry Service in the study of spruce budworm population dynamics. Can. For. Serv., Laurentian For. Cent., Info. Rep. LAU-X-83. 46 pp.Google Scholar
Lysyk, T.J. 1989. Stochastic model of eastern spruce budworm (Lepidoptera: Tortricidae) phenology on white spruce and balsam fir. J. econ. Ent. 82: 11611167.CrossRefGoogle Scholar
Maltais, J., Régnière, J., Cloutier, C., Hébert, C., and Perry, D.F.. 1989. Seasonal biology of Meteorus trachynotus Vier. (Hymenoptera: Braconidae) and of its overwintering host Choristoneura rosaceana (Harr.) (Lepidoptera: Tortricidae). Can. Ent. 121: 745756.CrossRefGoogle Scholar
Marsh, F.L. 1937. Biology of the tachinid Winthemia datanae Tns. Psyche 44: 138140.Google Scholar
McGugan, B.M. 1955. Certain host–parasite relationships involving the spruce budworm. Can. Ent. 87: 178187.CrossRefGoogle Scholar
McGugan, B.M., and Blais, J.R.. 1959. Spruce budworm parasite studies in northwestern Ontario. Can. Ent. 91: 758783.Google Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. Ent. 97: 5862.Google Scholar
Miller, C.A. 1963 a. The analysis of female proportion in the unsprayed area. pp. 7075in Morris, R.F. (Ed.), The Dynamics of Epidemic Spruce Budworm Populations. Mem. ent. Soc. Can. 31.Google Scholar
Miller, C.A. 1963 b. Parasites and the spruce budworm. pp. 228244in Morris, R.F. (Ed.), The Dynamics of Epidemic Spruce Budworm Populations. Mem. ent. Soc. Can. 31.Google Scholar
Miller, C.A., and Renault, T.R.. 1976. Incidence of parasitoids attacking endemic spruce budworm (Lepidoptera: Tortricidae) populations in New Brunswick. Can. Ent. 108: 10451052.Google Scholar
Nealis, V.G. 1988. Weather and the ecology of Apanteles fumiferanae Vier. (Hymenoptera: Braconidae). pp. 57–70 in Paths from a Viewpoint: The Wellington Festschrift on Insect Ecology. Mem. ent. Soc. Can. 146.Google Scholar
Nealis, V.G., and Fraser, S.. 1988. Rate of development, reproduction, and mass-rearing of Apanteles fumiferanae Vier. (Hymenoptera: Braconidae) under controlled conditions. Can. Ent. 120: 197204.CrossRefGoogle Scholar
Osborne, L.S. 1982. Temperature-dependent development of greenhouse whitefly and its parasite Encarsia formosa. Environ. Ent. 11: 483485.CrossRefGoogle Scholar
Régnière, J. 1982. A process-oriented model of spruce budworm phenology (Lepidoptera: Tortricidae). Can. Ent. 114: 811825.Google Scholar
Régnière, J. 1987. Temperature-dependent development of eggs and larvae of Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) and simulation of its seasonal history. Can. Ent. 119: 717728.Google Scholar
Ross, D.A. 1952. Key to the puparia of the dipterous parasites of Choristoneura fumiferana Clem. Can. Ent. 84: 108112.Google Scholar
SAS Institute Inc. 1985. SAS User's Guide: Statistics, Version 5 Edition. Cary, NC.Google Scholar
Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, C.E.. 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88: 719731.CrossRefGoogle ScholarPubMed
Sharpe, P.J.H., and DeMichele, D.W.. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Thomas, A.W. 1984. Individual rearing of spruce budworm larvae. Can. For. Serv. Res. Notes 4: 2325.Google Scholar
Wagner, T.L., Wu, H., Feldman, R.M., Sharpe, P.J.H., and Coulson, R.N.. 1985. Multiple-cohort approach for simulating development of insect populations under variable temperatures. Ann. ent. Soc. Am. 78: 691704.Google Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., and Coulson, R.N.. 1984 a. Modeling distributions of insect development time: a literature review and application of the Weibull function. Ann. ent. Soc. Am. 77: 475487.Google Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M., and Coulson, R.N.. 1984 b. Modeling insect development rates: a literature review and application of a biophysical model. Ann. ent. Soc. Am. 77: 208225.Google Scholar
Weibull, W. 1951. A statistical distribution function of wide applicability. J. Appl. Mech. 18: 293297.Google Scholar