Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T13:51:38.568Z Has data issue: false hasContentIssue false

Structure and conservation of lepidopteran communities in managed forests of northeastern North America: a review1

Published online by Cambridge University Press:  02 April 2012

Keith S. Summerville*
Affiliation:
Department of Environmental Science and Policy, Drake University, Des Moines, Iowa 50311, United States of America
Thomas O. Crist
Affiliation:
Department of Zoology, Miami University, Oxford, Ohio 45056, United States of America
*
2Corresponding author (e-mail: keith.summerville@drake.edu).

Abstract

We review the existing literature on patterns of moth (Lepidoptera) species richness and community composition in northeastern Nearctic forest ecosystems across hierarchical scales ranging from individual trees to entire managed ecoregions. Moths are species-rich in northeastern forests of North America, with the most diverse families being Noctuidae and Geometridae. Individual trees and forest stands, however, are often dominated by few species. Climate, stand age, disturbance regime, and landscape heterogeneity are significant predictors of abundance of dominant species. Most other moth species in the regional pool are patchily distributed and appear to occur regularly at very low abundance. Moth communities respond predictably to forest-management practices, and the outcomes of postmanagement response are largely driven by changes in the plant community. Significant reductions in moth species richness and changes in community composition are correlated with clear-cut harvesting, whereas selective logging appears to cause more moderate changes in moth community structure. Broad-scale effects of forest fragmentation on moth communities in unglaciated regions are best described by species replacement rather than species loss; moth species richness decreases slightly across a gradient of fragment sizes, but shifts in moth community composition are more important, especially in the relative importance of herbaceous-plant-feeding species in large and small fragments. Species that appear to be most sensitive to timber management or habitat loss are dietary specialists as larvae, dispersal-limited as adults, or dependent on commercially valuable tree species such as oaks, Quercus L. (Fagaceae). Restored forest stands tend to converge in terms of lepidopteran species dominance and diversity among stands, suggesting that the long-term consequences of timber management or habitat loss include a significant reduction of regional β-diversity. Finally, future research on forest Lepidoptera should include an emphasis on understanding the role of urban woodland habitat in retaining viable and diverse moth communities and how the spatial pattern of timber harvest affects the relative magnitude of α- and β-diversity components within a given ecoregion.

Résumé

Nous passons en revue la littérature sur les patrons de richesse spécifique et de composition des communautés de papillons de nuit (Lepidoptera) dans les écosystèmes forestiers néarctiques du nord-est à plusieurs échelles hiérarchiques depuis l’arbre individuel à l’écorégion aménagée complète. Les papillons de nuit comprennent de nombreuses espèces dans les forêts du nord-est de l’Amérique du Nord et les familles les plus diversifiées sont les Noctuidae et les Geometridae. Les arbres individuels et les peuplements forestiers sont cependant dominés par un petit nombre d’espèces. Les conditions climatiques, l’âge du peuplement, le régime de perturbation et l’hétérogénéité du paysage sont des variables prédictives significatives de l’abondance des espèces dominantes. La plupart des autres espèces de papillons de nuit du pool régional ont une répartition contagieuse et semblent se rencontrer régulièrement à de très faibles densités. Les communautés de papillons de nuit réagissent de façon prévisible aux pratiques d’aménagement forestier et les réactions qui suivent les aménagements s’expliquent en grande partie par les changements dans la communauté végétale. Il existe une corrélation entre la coupe à blanc et d’importantes réductions dans la richesse spécifique et des changements dans la composition de la communauté des papillons de nuit; la coupe sélective semble causer des changements plus restreints dans la structure des communautés de papillons de nuit. Les effets à grande échelle de la fragmentation des forêts sur les communautés de papillons de nuit dans les régions non glaciées sont mieux décrites comme des remplacements plutôt que des pertes d’espèces; la richesse spécifique des papillons de nuit décroît légèrement le long d’un gradient de taille des fragments forestiers, mais les changements de composition des communautés de papillons de nuit sont plus importants, particulièrement en ce qui concerne l’importance des espèces qui se nourrissent de plantes herbacées dans les petits et les grands fragments. Les espèces qui semblent les plus sensibles à l’aménagement forestier ou à la perte d’habitat sont celles qui ont des larves à régime alimentaire spécialisé et des adultes à dispersion restreinte ou alors qui dépendent d’essences de grande valeur commerciale, telles que les chênes, Quercus L. (Fagaceae). Dans les peuplements forestiers restaurés, il semble y avoir une convergence vers une dominance et une diversité semblables d’espèces de lépidoptères, ce qui laisse croire que les conséquences à long terme de l’aménagement forestier ou de la perte d’habitat comprennent une réduction importante de la diversité β régionale. Finalement, la recherche future sur les lépidoptères forestiers devrait chercher, en particulier, à comprendre le rôle des habitats boisés urbains dans le maintien de communautés viables et diversifiées de papillons de nuit et à étudier comment le patron spatial de la coupe forestière affecte l’importance relative des composantes α et β de la diversité dans une écorégion donnée.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, L., and Fenton, M.B. 1999. Bat attacks and defensive behavior around street lights. Canadian Journal of Zoology, 77: 2733.CrossRefGoogle Scholar
Bailey, R.G. 1995. Ecoregions: the ecosystem geography of the oceans and continents. Springer, New York.Google Scholar
Barbosa, P., and Krischik, V. 1989. Life-history traits of forest-inhabiting flightless Lepidoptera. American Midland Naturalist, 122: 262274.CrossRefGoogle Scholar
Barbosa, P., Segarra, A., and Gross, P. 2000. Structure of two macrolepidopteran assemblages on Salix nigra (Marsh) and Acer negundo (L.): abundance, diversity, richness, and persistence of scarce species. Ecological Entomology, 25: 374379.CrossRefGoogle Scholar
Battin, J. 2004. When good animals love bad habitats: ecological traps and the conservation of animal populations. Conservation Biology, 18: 14821491.CrossRefGoogle Scholar
Blair, R.B., and Launer, A.E., 1997. Butterfly diversity and human land use: species assemblages along an urban gradient. Biological Conservation, 80: 113125.CrossRefGoogle Scholar
Blais, J.R. 1983. Trends in the frequency, extent, and severity of spruce budworm outbreaks in eastern Canada. Canadian Journal of Forest Research, 13: 539547.CrossRefGoogle Scholar
Boettner, G.H., Elkington, J.S., and Boettner, C.J. 2000. Effects of a biological control introduction on three non-target species of saturniid moths. Conservation Biology, 14: 17981806.CrossRefGoogle Scholar
Boulanger, Y., and Arsenault, D. 2004. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Canadian Journal of Forest Research, 34: 10351043.CrossRefGoogle Scholar
Bucheli, S, Kahn, J.K., and Horn, D. 2006. Sampling to assess a re-established Appalachian forest in Ohio based on gelechioid moths (Lepidoptera: Gelechioidea). Biodiversity and Conservation, 15: 503516.CrossRefGoogle Scholar
Burford, L.D., Lacki, M.J., and Covell, C.V. 1999. Occurrence of moths among habitats in a mixed mesophytic forest: implications for management of forest bats. Forest Science, 45: 323332.Google Scholar
Burleigh, J.S., Alfaro, R.I., Borden, J.H., and Taylor, S. 2002. Historical and spatial characteristics of spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) outbreaks in northeastern British Columbia. Forest Ecology and Management, 168: 301309.CrossRefGoogle Scholar
Butler, L. 1992. The community of macrolepidopterous larvae at Cooper's Rock State Forest, West Virginia: a baseline study. The Canadian Entomologist, 124: 11491156.CrossRefGoogle Scholar
Butler, L., and Strazanac, J. 2000. Macrolepidopteran larvae sampled by tree bands in temperate mesic and xeric forests in eastern United States. Proceedings of the Entomological Society of Washington, 102: 188197.Google Scholar
Butler, L.V., Kondo, V., and Strazanac, J. 2001. Light trap catches of Lepidoptera in two central Appalachian forests. Proceedings of the Entomological Society of Washington, 103: 879902.Google Scholar
Chao, A., Chazdon, R.L., Colwell, R.K., and Shen, T.-J. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8: 148159.CrossRefGoogle Scholar
Cooke, B.J., and Roland, J. 2003. The effect of winter temperature on forest tent caterpillar (Lepidoptera: Lasiocampidae) egg survival and population dynamics in northern climates. Environmental Entomology, 32: 299311.CrossRefGoogle Scholar
Crist, T.O., Veech, J.A., Gering, J.C., and Summerville, K.S. 2004. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. American Naturalist, 162: 734743.CrossRefGoogle Scholar
Danks, H.V. 1988. Insects of Canada. Biological Survey of Canada, University of Alberta, Edmonton, Alberta.Google Scholar
Denno, R.F., McClure, M.S., and Ott, J.R. 1995. Interspecific interactions in phytophagous insects: competition re-examined and resurrected. Annual Review of Entomology, 40: 297331.CrossRefGoogle Scholar
Doak, P. 2000. Population consequences of restricted dispersal for an insect herbivore in a subdivided habitat. Ecology, 81: 18281841.CrossRefGoogle Scholar
Ehrlich, P.R. 1996. Conservation in temperate forests: what do we need to know and do? Forest Ecology and Management, 85: 919.CrossRefGoogle Scholar
Elkington, J.S., Healy, W.M., Buonaccorsi, J.P., Boettner, G.H., Hazzard, A.M., Smith, H.R., and Liebhold, A.M. 1996. Interactions among gypsy moths, white-footed mice, and acorns. Ecology, 77: 23322342.CrossRefGoogle Scholar
Fortin, M., and Mauffette, Y. 2002. The suitability of leaves from different canopy layers for a generalist herbivore (Lepidoptera: Lasiocampidae) foraging on sugar maple. Canadian Journal of Forest Research, 32: 379389.CrossRefGoogle Scholar
Foss, L.K., and Rieske, L.K. 2003. Species-specific differences in oak foliage affect preference and performance of gypsy moth caterpillars. Entomologia Experimentalis et Applica, 108: 8793.CrossRefGoogle Scholar
Frank, K.D. 1988. Impact of outdoor lighting on moths: an assessment. Journal of the Lepidopterists Society, 42: 6393.Google Scholar
Franklin, A.J., Liebhold, A.M., Murray, K., and Donahue, C. 2003. Canopy herbivore community structure: large-scale geographical variation and relation to forest composition. Ecological Entomology, 28: 278290.CrossRefGoogle Scholar
Franklin, J.F. 1988. Structural and functional diversity in temperate forests. In Biodiversity. Edited by Wilson, E.O.. National Academyo Press, Washington, D.C. pp. 166175.Google Scholar
Hammond, P.C., and Miller, J.C. 1998. Comparison of the biodiversity of Lepidoptera within three forested ecosystems. Annals of the Entomological Society of America, 91: 323328.CrossRefGoogle Scholar
Holl, K. 1996. The effect of coal surface mine reclamation on diurnal lepidopteran conservation. Journal of Applied Ecology, 33: 225236.CrossRefGoogle Scholar
Holmes, R.T, Schultz, J.C., and Nothnagel, P. 1979. Bird predation on forest insects: an exclosure experiment. Science (Washington, D.C.), 206: 462463.CrossRefGoogle ScholarPubMed
Hunter, A.F. 1991. Traits that distinguish outbreaking and nonoutbreaking Macrolepidoptera feeding on northern hardwood trees. Oikos, 60: 275282.CrossRefGoogle Scholar
Hunter, A.F., and Elkington, J.S. 2000. Effects of synchrony with host plant on populations of spring-feeding Lepidoptera. Ecology, 81: 12481261.CrossRefGoogle Scholar
Hunter, M.D. 1992. Interaction within herbivore communities mediated by the hostplant: the keystone herbivore concept. In Effects of resources distribution on animal–plant interactions. Edited by Hunter, M.D., Ohgushi, T., and Price, P.W.. Academic Press, New York. pp. 287325.CrossRefGoogle Scholar
Jones, C.G., Ostfeld, R.S., Richard, M.P., Schauber, E.M., and Wolf, J.O. 1998. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risks. Science (Washington, D.C.), 279: 10231096.CrossRefGoogle Scholar
Kerr, J.T., Vincent, R., and Currie, D. 1998. Lepidopteran richness patterns in North America. Ecoscience, 5: 448453.CrossRefGoogle Scholar
Larsen, D.R., and Johnson, P.S. 1998. Linking the ecology of natural oak regeneration to silviculture. Forest Ecology and Management, 106: 17.CrossRefGoogle Scholar
Liebhold, A.M., MacDonald, W.L., Bergdahl, D., and Mastro, V.C. 1995. Invasion of exotic pests: a threat to forest ecosystems. Forest Science Monographs, 30: 134.Google Scholar
Liebhold, A.M., Elkington, J., Williams, D., and Muzika, R.M. 2000. What causes outbreaks of the gypsy moth in North America? Population Ecology, 42: 257266.CrossRefGoogle Scholar
Lousier, J.D. 2000. Northern forest management issues. Forest Ecology and Management, 133: 13.CrossRefGoogle Scholar
Maier, C.T., and Davis, D.R. 1989. Southern New England host and distributional records of lithocolletine Gracillariidae (Lepidoptera) with comparison of host specificity in temperate regions. Miscellaneous Publications of the Entomological Society of America, 70: 123.Google Scholar
Margules, C.R., Nicholls, A.O., and Pressey, R.L. 1988. Selecting networks of reserves to maximize biological diversity. Biological Conservation, 43: 6376.CrossRefGoogle Scholar
Martel, J., and Mauffette, Y. 1997. Lepidopteran communities in temperate deciduous forests affected by forest decline. Oikos, 78: 4854.CrossRefGoogle Scholar
Miller, J.C. 1990. Field assessment of the effects of a microbial pest control agent on non-target Lepidoptera. American Entomologist, 36: 135139.CrossRefGoogle Scholar
Miller, J.C. 1992. Effects of microbial insecticide, Bacillus thuringiensis kurstaki, on non-target Lepidoptera in a spruce-budworm-infested forest. Journal of Research on the Lepidoptera, 29: 267276.CrossRefGoogle Scholar
Miller, K.E., and Gorchov, D.L. 2004. The invasive shrub Lonicera maackii, reduces growth and fecundity of perennial forest herbs. Oecologia, 139: 359376.CrossRefGoogle ScholarPubMed
Morin, R.S., Liebhold, A.M., and Gottschalk, K.W. 2004. Area-wide analysis of hardwood defoliator effects on tree conditions in the Allegheny Plateau. Northern Journal of Applied Forestry, 21: 3139.CrossRefGoogle Scholar
Muzika, R.M., and Liebhold, A.M. 2000. A critique of silvicultural approaches to managing defoliating insects in North America. Agricultural and Forest Entomology, 2: 97105.CrossRefGoogle Scholar
Myers, J.H. 1998. Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect. Ecology, 79: 11111117.CrossRefGoogle Scholar
Nealis, V.G., and Régnière, J. 2004 a. Fecundity and recruitment of eggs during outbreaks of the spruce budworm. The Canadian Entomologist, 136: 591604.CrossRefGoogle Scholar
Nealis, V.G., and Régnière, J. 2004 b. Insect–host relationships influencing disturbance by the spruce budworm in a boreal mixedwood forest. Canadian Journal of Forest Research, 34: 18701883.CrossRefGoogle Scholar
Nealis, V.G., Magnussen, S., and Hopkin, A.A. 2003. A lagged density-dependent relationship between jack pine budworm Choristonerua pinus pinus and its host tree Pinus banksiana. Ecological Entomology, 28: 183192.CrossRefGoogle Scholar
New, T.R. 2004. Looking to the future for moths. Journal of Insect Conservation, 8: 275276.CrossRefGoogle Scholar
Norton, T.W. 1996. Conservation of biological diversity in temperate and boreal ecosystems. Forest Ecology and Management, 85: 17.CrossRefGoogle Scholar
Opler, P. 1995. Conservation and management of butterfly diversity in North America. In Ecology and conservation of butterflies. Edited by Pullin, A.S.. Chapman and Hall, London, United Kingdom. pp. 316324.CrossRefGoogle Scholar
Ostaff, D.P., and Quiring, D.T. 2000. Role of host plant in the decline of populations of a specialist herbivore, the spruce bud moth. Journal of Animal Ecology, 69: 263273.CrossRefGoogle Scholar
Peacock, J.W., Schweitzer, D.F., Dale, F., Carter, J.L., and Dubois, N.R. 1998. Laboratory assessment of the effects of Bacillus thuringiensis on native Lepidoptera. Environmental Entomology, 27: 450457.CrossRefGoogle Scholar
Powell, J.A. 1980. Evolution of larval food preferences in microlepidoptera. Annual Review of Entomology, 25: 133159.CrossRefGoogle Scholar
Quayle, D., Régnière, J., Cappuccino, N., and Dupont, A. 2003. Forest composition, host population density, and parasitism of spruce budworm Choristoneura fumiferana eggs by Trichogramma minutum. Entomologia Experimentalis et Applicata, 107: 215228.CrossRefGoogle Scholar
Radeloff, V.C., Mladenoff, D.J., and Boyce, M.S. 2000. The changing relations of landscape patterns and jack pine budworm populations during an outbreak. Oikos, 90: 417430.CrossRefGoogle Scholar
Rastall, K., Kondo, V., Strazanac, J.S., and Butler, L. 2003. Lethal effects of biological insecticide applications on non-target lepidopterans in two Appalachian forests. Environmental Entomology, 32: 13641369.CrossRefGoogle Scholar
Redman, A.M., and Scriber, J.M. 2000. Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens, and parasitoids. Oecologia, 125: 218228.CrossRefGoogle ScholarPubMed
Reynolds, B.C., and Crossley, C.A. 1997. Spatial variation in herbivory by forest canopy arthropods among an elevation gradient. Environmental Entomology, 26: 12321239.CrossRefGoogle Scholar
Ricketts, T.H., Daily, G.C., Ehrlich, P.R., Fay, J.P. 2001. Countryside biogeography of moths in a fragmented landscape: biodiversity in native and agricultural habitats. Conservation Biology, 15: 378388.CrossRefGoogle Scholar
Robbins, R.K, and Opler, P. 1997. Butterfly diversity and a preliminary comparison with bird and mammal diversity. In Biodiversity II. Edited by Reaka-Kundla, M.L., and Wilson, D.E.. John Henry Press, New York. pp. 63108.Google Scholar
Roland, J. 1993. Large-scale forest fragmentation increases the duration of tent caterpillar outbreak. Oecologia, 93: 2530.CrossRefGoogle ScholarPubMed
Roland, J., and Kaupp, W.J. 1995. Reduced transmission of forest tent caterpillar NPV at the forest edge. Environmental Entomology, 24: 11751178.CrossRefGoogle Scholar
Roland, J., and Taylor, P.D. 1997. Insect parasitoid species respond to forest structure at different spatial scales. Nature (London), 386: 710713.CrossRefGoogle Scholar
Roland, J., Mackey, B.G., and Cooke, B. 1998. Effects of climate and forest structure on duration of forest tent caterpillar outbreaks across central Ontario, Canada. The Canadian Entomologist, 130: 703714.CrossRefGoogle Scholar
Rothman, L.D., and Roland, J. 1998. Forest fragmentation and colony performance of forest tent caterpillar. Ecography, 21: 383391.CrossRefGoogle Scholar
Royama, T., MacKinnon, W.E., Kettela, E.G., Carter, N.E., and Hartling, L.K. 2005. Analysis of spruce budworm outbreak cycles in New Brunswick, Canada, since 1952. Ecology, 86: 12121224.CrossRefGoogle Scholar
Schweitzer, D.F. 1982. Field observations of food plant overlap among sympatric Catocala on Juglandaceae. Journal of the Lepidopterists Society, 36: 256263.Google Scholar
Scoble, M.J. 1995. The Lepidoptera: form, function, and diversity. Oxford University Press, London, United Kingdom.Google Scholar
Scriber, J.M. 2005. Non-target impacts of forest defoliator management options: decision for nospraying may have worse impacts on non-target Lepidoptera than Bacillus thuringiensis insecticides. Journal of Insect Conservation, 8: 241261.CrossRefGoogle Scholar
Shields, V.D.C., Broomell, B.P., and Salako, J.O.B. 2003. Host selection and acceptability of selected tree species by gypsy moth larvae, Lymantria dispar (L.). Annals of the Entomological Society of America, 96: 920926.CrossRefGoogle Scholar
Spitzer, K., Rejmánek, W., and Soldán, T. 1984. The fecundity and long-term variability in abundance of noctuid moths (Lepidoptera: Noctuidae). Oecologia, 62: 9193.CrossRefGoogle ScholarPubMed
Summerville, K.S. 2004 a. Do smaller forest fragments contain a greater abundance of lepidopteran crop and forage consumers? Environmental Entomology, 33: 234241.CrossRefGoogle Scholar
Summerville, K.S. 2004 b. Functional groups and species replacement: testing for the effects of habitat loss on moth communities. Journal of the Lepidopterists Society, 58: 114117.Google Scholar
Summerville, K.S., and Crist, T.O. 2002 a. Effects of timber harvest on forest Lepidoptera: community, guild, and species responses. Ecological Applications, 12: 820835.CrossRefGoogle Scholar
Summerville, K.S., and Crist, T.O. 2002 b. Guild designations and testing for effects of gypsy moth (Lepidoptera: Lymantriidae) outbreaks on native lepidopteran communities: a comment on Work and McCullough (2000). Environmental Entomology, 31: 581584.CrossRefGoogle Scholar
Summerville, K.S., and Crist, T.O. 2003. Determinants of lepidopteran species diversity and composition in eastern deciduous forests: roles of season, region, and patch size. Oikos, 100: 134148.CrossRefGoogle Scholar
Summerville, K.S., and Crist, T.O. 2004. Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. Ecography, 27: 312.CrossRefGoogle Scholar
Summerville, K.S., Boulware, M.J., Veech, J.A., and Crist, T.O. 2003 a. Spatial variation in species diversity and composition of forest Lepidoptera in eastern deciduous forests of North America. Conservation Biology, 17: 10451057.CrossRefGoogle Scholar
Summerville, K.S., Crist, T.O., Kahn, J.K., and Gering, J.C. 2003 b. Community structure of arboreal caterpillars within and among four tree species of the eastern deciduous forest. Ecological Entomology, 28: 747757.CrossRefGoogle Scholar
Summerville, K.S., Metzler, E.H., and Crist, T.O. 2001. Diversity of forest Lepidoptera at local and regional scales: how heterogeneous is the fauna? Annals of the Entomological Society of America, 94: 583591.CrossRefGoogle Scholar
Summerville, K.S., Ritter, L.M., and Crist, T.O. 2004. Forest moth taxa as indicators of lepidopteran richness and habitat disturbance: a preliminary assessment. Biological Conservation, 116: 918.CrossRefGoogle Scholar
Summerville, K.S., Lewis, M.N., and Steichen, R.M. 2005. Restoring lepidopteran communities to savanna remnants: contrasting effects of habitat quantity and quality. Restoration Ecology, 13: 19.CrossRefGoogle Scholar
Summerville, K.S., Wilson, T.D., Crist, T.O., and Veech, J.A. 2006. Effect of body size and niche breadth on spatial partitioning of species diversity. Diversity and Distributions, 12: 91100.CrossRefGoogle Scholar
Taylor, L.R. 1973. Monitor surveying for migrant insect pests. Outlook on Agriculture, 7: 109116.CrossRefGoogle Scholar
Taylor, L.R., French, R.A., and Wiowode, I.P. 1978. The Rothamstead Insect Survey and the urbanization of land in Great Britain. In Perspectives in urban entomology. Edited by Frankie, G.W. and Koehler, C.S.. Academic Press, London, United Kingdom. pp. 3165.CrossRefGoogle Scholar
Thomas, A.W. 1996. Light trap catches of moths within and above the canopy of a northeastern forest. Journal of the Lepidopterists Society, 50: 2145.Google Scholar
Thomas, A.W. 2001. Moth diversity in a northeastern North American, red spruce forest I. Baseline study. Information Report M-X-210E, Canadian Forest Service, Ottawa, Ontario.Google Scholar
Thomas, A.W. 2002. Moth diversity in a northeastern North American, red spruce forest II. The effect of silvicultural practices on geometrid diversity. Information Report M-X-213E, dian Forest Service, Ottawa, Ontario.Google Scholar
Thomas, A.W., and Thomas, G.M. 1994. Sampling strategies for estimating moth species diversity using a light trap in a northeastern softwood forest. Journal of the Lepidopterists Society, 48: 85105.Google Scholar
Ulyshen, M.D., Hanula, J.L., Horn, S., Kilgo, J.C., and Moorman, C.E. 2005. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest. Environmental Entomology, 34: 395402.CrossRefGoogle Scholar
Vandermeer, J., Hoffman, B., Krantz-Ryan, S., Wijayratne, W., Buff, J., and Franciscus, V. 2001. Effect of habitat fragmentation on gypsy moth (Lymantria dispar L.) dispersal: the quality of the matrix. American Midland Naturalist, 145: 188193.CrossRefGoogle Scholar
Veech, J.A., Crist, T.O., and Summerville, K.S. 2003. The effect of intraspecific aggregation on species diversity of arthropods. Ecology, 84: 33763383.CrossRefGoogle Scholar
Venables, B.A.B. 1990. Preliminary assessment of the susceptibility of non-target Lepidopteran species to Bacillius thuringiensus (B.t.) and dimilin for gypsy moth suppression. Report for the Urban Ecology Program, United States Department of the Interior, Washington, D.C.Google Scholar
Wagner, D.L., Peacock, J.W., Carter, J.L., and Talley, S.E. 1995. Spring caterpillar fauna of oak and blueberry in a Virginia deciduous forest. Annals of the Entomological Society of America, 88: 416426.CrossRefGoogle Scholar
Wagner, D.L., Peacock, J.W., Carter, J.L., and Talley, S.E. 1996. Field assessment of Bacillus thuringiensis on non-target Lepidoptera. Environmental Entomology, 35: 14441454.CrossRefGoogle Scholar
Wagner, D.L., Ferguson, D.C., McCabe, T.L., and Reardon, R.C. 2001. Geometroid caterpillars of northeastern and Appalachian forests. United States Department of Agriculture, Morgantown, West Virginia.CrossRefGoogle Scholar
Weber, U.M., and Schweingruber, F.H. 1995. A dendrochroecological reconstruction of western spruce budworm outbreaks (Choristoneura occidentalis) in the Front Range, Colorado, from 1720 to 1986. Trees, 9: 204213.CrossRefGoogle Scholar
Whittaker, R.J., Araújo, M.B., Jepson, P., Ladle, R.J., Watson, J.E.M., and Willis, K.J. 2005. Conservation biogeography: assessment and prospect. Diversity and Distributions, 11: 323.CrossRefGoogle Scholar
Williams, D.W., and Liebhold, A.M. 1995. Influence of weather on the synchrony of gypsy moth (Lepidoptera: Lymantriidae) outbreaks in New England. Environmental Entomology, 24: 987995.CrossRefGoogle Scholar
Williams, D.W., and Liebhold, A.M. 2000. Spatial synchrony of spruce budworm outbreaks in North America. Ecology, 81: 27532766.CrossRefGoogle Scholar
Work, T.T., and McCullough, D.G. 2000. Lepidopteran communities in two forest ecosystems during the first gypsy moth outbreaks in northern Michigan. Environmental Entomology, 29: 884900.CrossRefGoogle Scholar