Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-09T05:54:02.860Z Has data issue: false hasContentIssue false

Stability of natural populations of an aphid, Uroleucon rudbeckiae, at three spatial scales

Published online by Cambridge University Press:  02 April 2012

Robert J. Lamb*
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Patricia A. MacKay
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
*
1 Corresponding author (e-mail: Bob.Lamb@agr.gc.ca).

Abstract

Stability (temporal variability, persistence, resilience) was assessed over 8–13 years for subpopulations, populations, and regional populations of Uroleucon rudbeckiae (Fitch) (Hemiptera: Aphididae) in southern Manitoba, Canada. Contrary to expectations, natural populations of this native aphid were not more stable than those of aphids inhabiting crops. Among population parameters, prevalence (proportion of plants infested) proved more effective for quantifying temporal variability than intensity (colony size) or abundance (number of aphids per stem). The parameter “population variability” was a more effective index of temporal variability than the standard deviation of the logarithm or the coefficient of variation. Small differences in temporal variability were detected among populations that varied greatly in size. Population variability declined slightly as spatial scale increased and did not increase consistently over time. Population variability can be considered characteristic of this species in southern Manitoba, having a value of 0.648 ± 0.080 (mean ± standard deviation, n = 5, over 8–13 years) on a scale of 0–1, a high degree of temporal variability. Persistence was not related to temporal variability. Subpopulations were less persistent than populations, and one of five populations did not persist. Small populations were more likely to disappear temporarily. No resilience was detected.

Résumé

Nous avons évalué la stabilité (variabilité temporelle, persistance, résilience) sur une période de 8–13 années dans des sous-populations, des populations et des populations régionales d'Uroleucon rudbeckiae (Fitch) (Hemiptera : Aphididae). Contrairement à nos attentes, les populations naturelles de ce puceron indigène ne sont pas plus stables que celles des pucerons qui vivent sur les plantes cultivées. Parmi les variables démographiques, la prévalence (proportion des plantes infestées) s’avère plus efficace comme mesure de la variabilité temporelle que l'intensité (taille de la colonie) ou l'abondance (pucerons par tige). La «variabilité démographique» est un indice plus efficace de la variabilité temporelle que l'écart type du logarithme ou le coefficient de variation. De petites différences de variabilité temporelle peuvent être décelées entre des populations qui diffèrent considérablement en taille. La variabilité démographique diminue légèrement à mesure que l'échelle spatiale augmente, mais elle ne s’accroît pas de façon régulière dans le temps. La variabilité démographique peut être considérée comme une caractéristique de cette espèce dans le sud du Manitoba, Canada, avec une valeur de 0,648 ± 0,080 (± l'écart type, n = 5, sur 8 à 13 ans) sur une échelle de 0 à 1, ce qui représente un haut niveau de variabilité temporelle. Il n’y a pas de relation entre la persistance et la variabilité temporelle. Les sous-populations sont moins persistantes que les populations et une des cinq populations ne s’est pas maintenue. Les petites populations sont plus susceptibles de disparaître avec le temps. Aucune résilience n’a été décelée.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alyokhin, A., Drummond, F.A., and Sewell, G. 2005. Density-dependent regulation in populations of potato-colonizing aphids. Population Ecology, 47: 257266. doi:10.1007/s10144-005-0232-1.CrossRefGoogle Scholar
Bommarco, R., and Ekbom, B. 1996. Variation in pea aphid population development in three different habitats. Ecological Entomology, 21: 235240.CrossRefGoogle Scholar
Brook, R.K. 2009. Historical review of elk–agriculture conflicts in and around Riding Mountain National Park, Manitoba, Canada. Human–Wildlife Conflicts, 3: 7287.Google Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M., and Shostak, A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83: 575583. PMID:9267395 doi:10.2307/3284227.CrossRefGoogle Scholar
Cappuccino, N. 1987. Comparative population dynamics of two goldenrod aphids: spatial patterns and temporal constancy. Ecology, 68: 16341646. doi:10.2307/1939856.CrossRefGoogle ScholarPubMed
Cody, W.J. 1988. Plants of Riding Mountain National Park, Manitoba. Publication 1818/E, Canadian Government Publishing Centre, Ottawa, Ontario.Google Scholar
Connell, J.H., and Sousa, W.P. 1983. On the evidence needed to judge ecological stability or persistence. The American Naturalist, 121: 789824. doi:10.1086/284105.CrossRefGoogle Scholar
Dixon, A.F.G. 1985. Aphid ecology. Chapman and Hall, London, United Kingdom.Google Scholar
Dixon, A.F.G. 2005. Insect herbivore–host dynamics. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Grimm, V., and Wissel, C. 1997. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109: 323334. doi:10.1007/s004420050090.CrossRefGoogle Scholar
Heath, J.P. 2006. Quantifying temporal variability in population abundances. Oikos, 115: 573581. doi:10.1111/j.2006.0030-1299.15067.x.CrossRefGoogle Scholar
Honěk, A., and Martinková, Z. 1999. Host-plant mediated influences on population development of Sitobion avenae (Sternorrhyncha: Aphididae). European Journal of Entomology, 96: 135141.Google Scholar
Jones, M.G. 1979. Abundance of aphids on cereals from before 1973 to 1977. Journal of Applied Ecology, 16: 122. doi:10.2307/2402724.CrossRefGoogle Scholar
Lamb, R.J., Wise, I.L., and MacKay, P.A. 1997. Photoperiodism and seasonal abundance of an aphid, Macrosiphum euphorbiae (Thomas), in oilseed flax. The Canadian Entomologist, 129: 10491058.CrossRefGoogle Scholar
Maiteki, G.A., Lamb, R.J., and Ali-Khan, S.T. 1986. Seasonal abundance of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae), in Manitoba field peas. The Canadian Entomologist, 118: 601607.CrossRefGoogle Scholar
McArdle, B.H., and Anderson, M.J. 2004. Variance heterogeneity, transformations, and models of species abundance: a cautionary tale. Canadian Journal of Fisheries and Aquatic Sciences, 61: 12941302. doi:10.1139/f04-051.CrossRefGoogle Scholar
McArdle, B.H., Gaston, K.J., and Lawton, J.H. 1990. Variation in the size of animal populations: patterns, problems and artefacts. Journal of Animal Ecology 59: 439454. doi:10.2307/4873.CrossRefGoogle Scholar
Olive, A.T. 1963. The genus Dactynotus Rafinesque in North Carolina (Homoptera: Aphididae). Miscellaneous Publications of the Entomological Society of America, 4: 3266.Google Scholar
Pimm, S.L., and Redfearn, A. 1988. The variability of population densities. Nature (London), 334: 613614 doi:10.1038/334613a0.CrossRefGoogle Scholar
Redfearn, A., and Pimm, S.L. 1988. Population variability and polyphagy in herbivorous insect communities. Ecological Monographs, 58: 3955. doi:10.2307/1942633.CrossRefGoogle Scholar
Robinson, A.G. 1985. Annotated list of Uroleucon (Uroleucon, Uromelan, Satula) (Homoptera: Aphididae) of America north of Mexico, with keys and descriptions of new species. The Canadian Entomologist, 117: 10291054.CrossRefGoogle Scholar
Rózsa, L., Reiczigel, J., and Majoros, G. 2000. Quantifying parasites in samples of hosts. Journal of Parasitology, 86: 228232. PMID:10780537.CrossRefGoogle ScholarPubMed
Schoener, T.W., and Spiller, D.A. 1987. High population persistence in a system with high turnover. Nature (London), 330: 474477. doi:10.1038/330474a0.CrossRefGoogle Scholar
Scoggan, H.J. 1957. Flora of Manitoba. Bulletin No. 140, National Museum of Canada, Ottawa, Ontario.Google Scholar
Service, P. 1984. The distribution of aphids in response to variation among individual host plants: Uroleucon rudbeckiae (Homoptera: Aphididae) and Rudbeckia laciniata (Asteraceae). Ecological Entomology, 9: 321328. doi:10.1111/j.1365-2311.1984.tb00855.x.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J. 1981. Biometry. W.H. Freeman and Company, New York.Google Scholar
Southwood, T.R.E. 1978. Ecological methods. Chapman and Hall, London, United Kingdom.Google Scholar
Sutirth, D., Prasad, N.G., Shakarad, M., and Joshi, A. 2008. Laboratory evolution of population stability in Drosophila: constancy and persistence do not necessarily coevolve. Journal of Animal Ecology, 77: 670677. PMID:18479342 doi:10.1111/j.1365-2656.2008.01401.x.Google Scholar
Taylor, L.R., and Woiwod, I.P. 1980. Temporal stability as a density-dependent species characteristic. Journal of Animal Ecology, 49: 209224. doi:10.2307/4285.CrossRefGoogle Scholar
Taylor, L.R., Woiwod, I.P., and Perry, J.N. 1980. Variance and the large scale spatial stability of aphids, moths, and birds. Journal of Animal Ecology, 49: 831854. doi:10.2307/4230.CrossRefGoogle Scholar
van Emden, H.F., and Williams, G.G. 1974. Insect stability and diversity in agro-ecosystems. Annual Review of Entomology, 19: 455475. doi:10.1146/annurev.en.19.010174.002323.CrossRefGoogle Scholar
Way, M.J. 1967. The nature and causes of annual fluctuations in numbers of Aphis fabae Scop. on field beans (Vicia faba). Annals of Applied Biology, 59: 175188. doi:10.1111/j.1744-7348.1967.tb04427.x.CrossRefGoogle Scholar
Way, M.J., and Cammell, M.E. 1970. Self regulation in aphid populations. In Proceedings of the Advanced Study Institute on the Dynamics and Numbers of Populations, Oesterbeek, the Netherlands, 7–18 September 1970. Edited by den Boer, P.J. and Gradwell, G.R.. Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands. pp. 232242.Google Scholar
Wellings, P.W., Chambers, R.J., Dixon, A.F.G., and Aikman, D.P. 1985. Sycamore aphid numbers and population density, I. Some patterns. Journal of Animal Ecology, 54: 411424. doi:10.2307/4488.CrossRefGoogle Scholar
Wool, D. 2002. Herbivore abundance is independent of weather? A 20-year study of a galling aphid Baizongia pistacieae (Homoptera: Aphidoidea). Population Ecology, 44: 281291. doi:10.1007/s101440200032.CrossRefGoogle Scholar