Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T06:03:34.545Z Has data issue: false hasContentIssue false

Spotted-wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), exhibits large-scale spatial genetic structure across Canada but not fruit host–associated genetic structure

Published online by Cambridge University Press:  04 December 2023

Tyler D. Nelson
Affiliation:
Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia, V0H 1Z0, Canada
Yonathan Uriel
Affiliation:
Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, 6947 Highway 7, Agassiz, British Columbia, V0M 1A0, Canada
Paul K. Abram
Affiliation:
Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, 6947 Highway 7, Agassiz, British Columbia, V0M 1A0, Canada
Chandra E. Moffat
Affiliation:
Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia, V0H 1Z0, Canada
Jade Sherwood
Affiliation:
Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, 6947 Highway 7, Agassiz, British Columbia, V0M 1A0, Canada Faculty of Land and Food Systems, The University of British Columbia, 2357 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
Justin M. Renkema
Affiliation:
Agriculture and Agri-Food Canada, London Research and Development Centre – Vineland, 4902 Victoria Ave N, Vineland Station, Ontario, L0R 2E0, Canada
Debra Moreau
Affiliation:
Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada
Michelle T. Franklin*
Affiliation:
Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, 6947 Highway 7, Agassiz, British Columbia, V0M 1A0, Canada
*
Corresponding author: Michelle T. Franklin; Email: michelle.franklin@agr.gc.ca

Abstract

Spotted-wing drosophila, Drosophila suzukii, is a global pest of soft fruits that is capable of reproducing on a wide range of cultivated and wild plant species. In Canada, D. suzukii was first reported in British Columbia in 2009 and is now widespread across the country. Understanding the genetic structure of D. suzukii populations could be important for pest management if there are phenotypic differences between genetically distinct populations. For example, insect pest populations could respond differently to directional selection imposed by insecticides, differ in their host plant preferences, and vary in their susceptibility to biological control agents. Here, we used double-digest restriction site–associated DNA sequencing to examine large- and fine-scale patterns of the genetic structure of D. suzukii reared from fruit hosts in Canada. We found that this species has a large-scale spatial genetic structure; the flies collected formed two distinct genetic clusters, one of which was distinct to western Canada and the other to eastern Canada. At the local scale, D. suzukii populations showed no evidence of host-associated structuring in British Columbia, suggesting that pest management tactics may be best applied at the landscape level. Our results highlight the need to investigate phenotypic differences between western and eastern D. suzukii populations in Canada.

Type
Scientific Note
Copyright
© His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada, 2023. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Erin Campbell

References

Abram, P.K., Franklin, M.T., Hueppelsheuser, T., Carrillo, J., Grove, E., Eraso, P., et al. 2022a. Adventive larval parasitoids reconstruct their close association with spotted-wing drosophila in the invaded North American range. Environmental Entomology, 51: 670678. https://doi.org/10.1093/ee/nvac019.CrossRefGoogle ScholarPubMed
Abram, P.K., Wang, X., Hueppelsheuser, T., Franklin, M.T., Daane, K.M., Lee, J.C., et al. 2022b. A coordinated sampling and identification methodology for larval parasitoids of spotted-wing drosophila. Journal of Economic Entomology, 115: 922942. https://doi.org/10.1093/jee/toab237.CrossRefGoogle ScholarPubMed
Asplen, M.K., Anfora, G., Biondi, A., Choi, D.-S., Chu, D., Daane, K.M., et al. 2015. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. Journal of Pest Science, 88: 469494. https://doi.org/10.1007/s10340-015-0681-z.CrossRefGoogle Scholar
British Columbia Ministry of Agriculture and Food. 2023. Spotted-wing drosophila [online]. Available from https://www2.gov.bc.ca/gov/content/industry/agriculture-seafood/animals-and-crops/plant-health/insects-and-plant-diseases/tree-fruits/spotted-wing-drosophila [accessed 13 July 2023].Google Scholar
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., et al. 2011. The variant call format and VCFtools. Bioinformatics, 27: 21562158. https://doi.org/10.1093/bioinformatics/btr330.CrossRefGoogle ScholarPubMed
Evanno, G., Regnaut, S., and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 26112620. https://doi.org/10.1111/j.1365-294X.2005.02553.x.CrossRefGoogle ScholarPubMed
Fraimout, A., Debat, V., Fellous, S., Hufbauer, R.A., Foucaud, J., Pudlo, P., et al. 2017. Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Molecular Biology and Evolution, 34: 980996. https://doi.org/10.1093/molbev/msx050.Google ScholarPubMed
Ganjisaffar, F., Gress, B.E., Demkovich, M.R., Nicola, N.L., Chiu, J.C., and Zalom, F.G. 2022. Spatio-temporal variation of spinosad susceptibility in Drosophila suzukii (Diptera: Drosophilidae), a three-year study in California’s Monterey Bay Region. Journal of Economic Entomology, 115: 972980. https://doi.org/10.1093/jee/toac011.CrossRefGoogle ScholarPubMed
Green, K.K., Stenberg, J.A., and Lankinen, A. 2020. Making sense of integrated pest management (IPM) in the light of evolution. Evolutionary Applications, 13: 17911805. https://doi.org/10.1111/eva.13067.CrossRefGoogle Scholar
Gress, B.E. and Zalom, F.G. 2019. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii . Pest Management Science, 75: 12701276. https://doi.org/10.1002/ps.5240.CrossRefGoogle Scholar
Jombart, T. and Ahmed, I. 2011. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27: 30703071. https://doi.org/10.1093/bioinformatics/btr521.CrossRefGoogle Scholar
Kamvar, Z.N., Brooks, J.C., and Grünwald, N.J. 2015. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in Genetics, 6: 208. https://doi.org/10.3389/fgene.2015.00208.CrossRefGoogle Scholar
Kenis, M., Tonina, L., Eschen, R., van der Sluis, B., Sancassani, M., Mori, N., et al. 2016. Non-crop plants used as hosts by Drosophila suzukii in Europe. Journal of Pest Science, 89: 735748. https://doi.org/10.1007/s10340-016-0755-6.CrossRefGoogle ScholarPubMed
Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A., and Mayrose, I. 2015. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15: 11791191. https://doi.org/10.1111/1755-0998.12387.CrossRefGoogle ScholarPubMed
Kraaijeveld, A.R. and Godfray, H.C.J. 1999. Geographic patterns in the evolution of resistance and virulence in Drosophila and its parasitoids. The American Naturalist, 153: S61S74. https://doi.org/10.1086/303212.CrossRefGoogle ScholarPubMed
Lewald, K.M., Abrieux, A., Wilson, D.A., Lee, Y., Conner, W.R., Andreazza, F., et al. 2021. Population genomics of Drosophila suzukii reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3: Genes, Genomes, Genetics, 11: jkab343. https://doi.org/10.1093/g3journal/jkab343.CrossRefGoogle Scholar
Li, H. and Durbin, R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25: 17541760. https://doi.org/10.1093/bioinformatics/btp324.CrossRefGoogle ScholarPubMed
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25: 20782079. https://doi.org/10.1093/bioinformatics/btp352.CrossRefGoogle ScholarPubMed
Li, Y.L. and Liu, J.X. 2018. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18: 176177. https://doi.org/10.1111/1755-0998.12719.CrossRefGoogle ScholarPubMed
MacDonald, Z.G., Dupuis, J.R., Davis, C.S., Acorn, J.H., Nielsen, S.E., and Sperling, F.A.H. 2020. Gene flow and climate-associated genetic variation in a vagile habitat specialist. Molecular Ecology, 29: 38893906. https://doi.org/10.1111/mec.15604.CrossRefGoogle Scholar
Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17: 1012. https://doi.org/10.14806/ej.17.1.200.CrossRefGoogle Scholar
Nazareno, A.G., Bemmels, J.B., Dick, C.W., and Lohmann, L.G. 2017. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Molecular Ecology Resources, 17: 11361147. https://doi.org/10.1111/1755-0998.12654.CrossRefGoogle ScholarPubMed
Nelson, T.D., MacDonald, Z.G., and Sperling, F.A.H. 2022. Moths passing in the night: phenological and genomic divergences within a forest pest complex. Evolutionary Applications, 15: 166180. https://doi.org/10.1111/eva.13338 CrossRefGoogle ScholarPubMed
Olazcuaga, L., Foucaud, J., Deschamps, C., Loiseau, A., Claret, J.L., Vedovato, R., et al. 2022. Rapid and transient evolution of local adaptation to seasonal host fruits in an invasive pest fly. Evolution Letters, 6: 490505. https://doi.org/10.1002/evl3.304.CrossRefGoogle Scholar
Ontario Ministry of Agriculture, Food, and Rural Affairs. 2022. Management guidelines for spotted-wing drosophila in Ontario [online]. Available from https://www.ontario.ca/page/management-guidelines-spotted-wing-drosophila-ontario [accessed 13 July 2023].Google Scholar
Paris, J.R., Stevens, J.R., and Catchen, J.M. 2017. Lost in parameter space: a road map for stacks. Methods in Ecology and Evolution, 8: 13601373 https://doi.org/10.1111/2041-210X.12775.CrossRefGoogle Scholar
Paris, M., Boyer, R., Jaenichen, R., Wolf, J., Karageorgi, M., Green, J., et al. 2020. Near-chromosome level genome assembly of the fruit pest Drosophila suzukii using long-read sequencing. Scientific Reports, 10: 11227. https://doi.org/10.1038/s41598-020-67373-z.CrossRefGoogle ScholarPubMed
Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, Á., and Lareu, M.V. 2013. An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in Genetics, 4: 113. https://doi.org/10.3389/fgene.2013.00098.CrossRefGoogle ScholarPubMed
Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945959. https://doi.org/10.1093/genetics/155.2.945.CrossRefGoogle ScholarPubMed
Puechmaille, S.J. 2016. The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: sub-sampling and new estimators alleviate the problem. Molecular Ecology Resources, 16: 608627. https://doi.org/10.1111/1755-0998.12512.CrossRefGoogle ScholarPubMed
Qu, W.-M., Liang, N., Wu, Z.-K., Zhao, Y.-G., and Chu, D. 2020. Minimum sample sizes for invasion genomics: empirical investigation in an invasive whitefly. Ecology and Evolution, 10: 3849. https://doi.org/10.1002/ece3.5677.CrossRefGoogle Scholar
Rochette, N.C., Rivera-Colón, A.G., and Catchen, J.M. 2019. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology, 28: 47374754. https://doi.org/10.1111/mec.15253.CrossRefGoogle ScholarPubMed
Rota-Stabelli, O., Ometto, L., Tait, G., Ghirotto, S., Kaur, R., Drago, F., et al. 2020. Distinct genotypes and phenotypes in European and American strains of Drosophila suzukii: implications for biology and management of an invasive organism. Journal of Pest Science, 93: 7789. https://doi.org/10.1007/s10340-019-01172-y.CrossRefGoogle Scholar
Shi, W., Ayub, Q., Vermeulen, M., Shao, R.G., Zuniga, S., van der Gaag, K., et al. 2010. A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP–CEPH populations. Molecular Biology and Evolution, 27: 385393. https://doi.org/10.1093/molbev/msp243.CrossRefGoogle ScholarPubMed
Tabashnik, B.E., Brévault, T., and Carrière, Y. 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotechnology, 31: 510521. https://doi.org/10.1038/nbt.2597.CrossRefGoogle ScholarPubMed
Tait, G., Mermer, S., Stockton, D., Lee, J., Avosani, S., Abrieux, A., et al. M. 2021. Drosophila suzukii (Diptera: Drosophilidae): a decade of research towards a sustainable integrated pest management program. Journal of Economic Entomology, 114: 19501974. https://doi.org/10.1093/jee/toab158.CrossRefGoogle ScholarPubMed
Thistlewood, H.M.A., Gibson, G.A.P., Gillespie, D.R., and Fitzpatrick, S.M. 2013. Drosophila suzukii (Matsumura), spotted wing drosophila (Diptera: Drosophilidae). In Biological control programmes in Canada 2001–2012. Edited by P.G. Mason and D.R. Gillespie. CABI Publishing, Wallingford, Oxfordshire, United Kingdom. Pp. 152–155. https://doi.org/10.1079/9781780642574.0152 CrossRefGoogle Scholar
Thistlewood, H.M.A., Rozema, B., and Acheampong, S. 2019. Infestation and timing of use of non-crop plants by Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the Okanagan Basin, Canada. The Canadian Entomologist, 151: 3448. https://doi.org/10.4039/tce.2018.47.CrossRefGoogle Scholar
Vähä, J.-P., Erkinaro, J., Niemela, E., and Primmer, C.R. 2007. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Molecular Ecology, 16: 26382654. https://doi.org/10.1111/j.1365-294X.2007.03329.x.CrossRefGoogle ScholarPubMed
Wang, J. 2017. The computer program STRUCTURE for assigning individuals to populations: easy to use but easier to misuse. Molecular Ecology Resources, 17: 981990. https://doi.org/10.1111/1755-0998.12650.CrossRefGoogle ScholarPubMed
Wang, X., Lee, J.C., Daane, K.M., Buffington, M.L., and Hoelmer, K.A. 2020. Biological control of Drosophila suzukii . CABI Reviews, 15. https://doi.org/10.1079/PAVSNNR202015054.Google Scholar
Weir, B.S. and Cockerham, C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 13581370. https://doi.org/10.2307/2408641.Google ScholarPubMed
Wickham, H. 2016. ggplot2: elegant graphics for data analysis [online]. Springer-Verlag New York, New York, United States of America. Available from https://CRAN.R-project.org/package=ggplot2 [accessed 17 February 2022].Google Scholar
Supplementary material: PDF

Nelson et al. supplementary material

Figures S1-S10

Download Nelson et al. supplementary material(PDF)
PDF 805.7 KB
Supplementary material: PDF

Nelson et al. supplementary material

Table S1

Download Nelson et al. supplementary material(PDF)
PDF 122.3 KB
Supplementary material: PDF

Nelson et al. supplementary material

Table S1

Download Nelson et al. supplementary material(PDF)
PDF 85 KB