Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T23:43:38.307Z Has data issue: false hasContentIssue false

SPATIAL PATTERNS OF AND SAMPLING METHODS FOR ORIUS SPP. (HEMIPTERA: ANTHOCORIDAE) ON GREENHOUSE SWEET PEPPER

Published online by Cambridge University Press:  31 May 2012

J.L. Shipp
Affiliation:
Agriculture Canada Research Station, Harrow, Ontario, Canada N0R 1G0
N. Zariffa
Affiliation:
Agriculture Canada Research Station, Harrow, Ontario, Canada N0R 1G0
G. Ferguson
Affiliation:
Agriculture Canada Research Station, Harrow, Ontario, Canada N0R 1G0

Abstract

Intra- and inter-plant spatial patterns were determined for adults and nymphs of Orius insidiosus (Say) and O. tristicolor (White) on greenhouse sweet pepper for three greenhouses using four sampling methods. The population density of the Orius was monitored biweekly for 4 months from May to August using plant tappings, blossoms, plant leaves, and whole plants. The intra-plant spatial patterns of adult and nymphal populations of Orius were aggregated with the majority of the Orius collected from the top one-third of the plant. The inter-plant spatial pattern for the nymphs also was aggregated. However, the adults exhibited a random inter-plant spatial pattern. The accuracy of plant tapping, blossom, and leaf samples was determined for monitoring the adult and nymphal population densities of Orius throughout the growing season. The blossom sampling method for adult Orius was the best sampling method for monitoring the population density of Orius on greenhouse sweet pepper throughout the growing season.

Résumé

La répartition spatiale sur un seul plant et sur plusieurs plants a été étudiée par quatre méthodes d’échantillonnage chez des adultes et des larves d’Orius insidiosus (Say) et Orius tristicolor (White) élevés sur des plants de poivrons cultivés dans trois serres. La densité du peuplement d’Orius a été échantillonnée deux fois par semaine pendant 4 mois, de mai à août, dans la sève, les fleurs, les feuilles et les plants entiers. La répartition sur un seul plant était contagieuse, aussi bien chez les peuplements d’adultes que chez les peuplements de larves, et la majorité des insectes récoltés occupaient le tiers supérieur de la plante. La répartition sur l’ensemble des plants était également contagieuse chez les larves. Cependant, les adultes étaient répartis au hasard au sein de la population de plants. La précision des échantillons de sève, de fleurs et de feuilles dans l’évaluation des densités de population des adultes et des larves d’Orius a été déterminée pendant toute la saison de croissance. L’échantillonnage des insects adultes sur les fleurs est la méthode qui fournit la meilleure évaluation de la densité des peuplements d’Orius sur les poivrons durant toute la saison de la croissance.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1988. Growing greenhouse vegetables. Ontario Ministry of Agriculture and Food. Publication 526: 54 pp.Google Scholar
Askari, A., and Stem, V.M.. 1972. Biology and feeding habits of Orius tristicolor (Hemiptera: Anthocoridae). Annals Entomological Society America 65: 96100.CrossRefGoogle Scholar
Barber, G.W. 1936. Orius insidiosus (Say), an important natural enemy of the corn earworm. USDA Technical Bulletin 504: 24 pp.Google Scholar
Bechinski, E.J., and Pedigo, L.P.. 1981. Population dispersion and development of sampling plans for Orius insidiosus and Nabis spp. in soybeans. Environmental Entomology 10: 956959.CrossRefGoogle Scholar
Bechinski, E.J., and Pedigo, L.P.. 1982. Evaluation of methods for sampling predatory arthropods in soybeans. Environmental Entomology 11: 756761.CrossRefGoogle Scholar
Ehler, L.E., and van den Bosch, R.. 1974. An analysis of the natural biological control of Trichoplusia ni (Lepidoptera: Noctuidae) on cotton in California. The Canadian Entomologist 106: 10671073.CrossRefGoogle Scholar
Gilkeson, L.A., Morewood, W.D., and Elliot, D.E.. 1990. Current status of biological control of thrips in Canadian greenhouses with Amblyseius cucumeris and Orius tristicolor. West Palaearctic Regional Section Bulletin XIII/5: 7175.Google Scholar
González, D., Ramsey, D.A., Leigh, T.F., Ekbom, B.S., and van den Bosch, R.. 1977. A comparison of vacuum and whole-plant methods for sampling predaceous arthropods on cotton. Environmental Entomology 6: 750760.CrossRefGoogle Scholar
Ignoffo, C.M., Marston, N.L., Putler, B., Hostetter, D.L., Thomas, G.O., Biever, K.D., and Dickerson, W.A.. 1976. Natural biotic agents controlling insect pests of Missouri soybeans. pp. 561–578 in Hill, L.D. (Ed.), World Soybean Research. Interstate Printers and Publishers, Inc., Danville, IL. 1073 pp.Google Scholar
Isenhour, D.J., and Yeargan, K.V.. 1982. Ovipositional sites of Orius insidiosus (Say) and Nabis spp. in soybean (Hemiptera: Anthocoridae and Nabidae). Journal Kansas Entomological Society 55: 6572.Google Scholar
Kelton, L.A. 1978. The insects and arachnids of Canada. Part 4. The Anthocoridae of Canada and Alaska. Supply and Services Canada. Publication 1639: 101 pp.Google Scholar
Letoumeau, D.K., and Altieri, M.A.. 1983. Abundance patterns of a predator, Orius tristicolor (Hemiptera: Anthocoridae), and its prey, Frankliniella occidentalis (Thysanoptera: Thripidae): Habitat attraction in polycultures versus monocultures. Environmental Entomology 12: 14641469.CrossRefGoogle Scholar
McCaffrey, J.P., and Horsburgh, R.L.. 1986. Biology of Orius insidiosus (Heteroptera: Anthocoridae): A predator in Virginia apple orchards. Environmental Entomology 15: 984988.CrossRefGoogle Scholar
Parrella, M.P., McCaffrey, J.P., and Horsburgh, R.L.. 1981. Population trends of selected phytophagous arthropods and predators under different pesticide programs in Virginia apple orchards. Journal Economic Entomology 74: 492498.CrossRefGoogle Scholar
Salas-Aguilar, J., and Ehler, L.E.. 1977. Feeding habits of Orius tristicolor. Annals Entomological Society America 70: 6062.CrossRefGoogle Scholar
Shipp, J.L., and Whitfield, G.H.. 1991. Functional response of the predatory mite, Amblyseius cucumeris (Acarina: Phytoseiidae), on western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Environmental Entomology 20: 694699.CrossRefGoogle Scholar
Shipp, J.L., and Zariffa, N.. 1991. Spatial patterns of and sampling methods for western flower thrips (Thysanoptera: Thripidae) on greenhouse sweet pepper. The Canadian Entomologist 123: 9891000.CrossRefGoogle Scholar
Southwood, T.R.E. 1978. Ecological Methods. Halsted Press, New York, NY. 524 pp.Google Scholar
Steel, R.G.D., and Torrie, J.H.. 1980. Principles and Procedures of Statistics. McGraw-Hill Book Co., Toronto, Ont. 481 pp.Google Scholar
Stoltz, R.L., and Stern, V.M.. 1978. The longevity and fecundity of Orius tristicolor when introduced to increasing numbers of the prey Frankliniella occidentalis. Environmental Entomology 7: 197198.CrossRefGoogle Scholar
Taylor, L.R. 1961. Aggregation, variance and the mean. Nature 189: 732735.CrossRefGoogle Scholar
Tellier, A.J., and Steiner, M.Y.. 1990. Control of the western flower thrips, Frankliniella occidentalis (Pergande), with a native predator Orius tristicolor (White) in greenhouse cucumbers and peppers in Alberta, Canada. West Palaearctic Regional Section Bulletin XIII/5: 209211.Google Scholar