Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-26T02:04:38.807Z Has data issue: false hasContentIssue false

SPATIAL DISTRIBUTION AND SEQUENTIAL SAMPLING METHODS FOR THE POTATO APHID, MACROSIPHUM EUPHORBIAE (THOMAS) (HOMOPTERA: APHIDIDAE), IN OILSEED FLAX1

Published online by Cambridge University Press:  31 May 2012

I.L. Wise
Affiliation:
Agriculture and Agri-Food Canada, Winnipeg Research Centre, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.J. Lamb
Affiliation:
Agriculture and Agri-Food Canada, Winnipeg Research Centre, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

Sequential decision plans based on aphid counts and binomial counts of infested plants (presence or absence of aphids) were developed to guide chemical control decisions for die potato aphid, Macrosiphum euphorbiae, on two growth stages of oilseed flax in western Canada. The plans were derived from studies of aphid dispersion among plants in field plots at two locations over 4 years, and verified in samples from 51 commercial fields, in Manitoba. The relationship between variance (s2) and mean aphid density () perplant was loges2 = 0.790 ± 0.050 + (1.649 ± 0.031) loge (n = 69, r2 = 0.98), for both crop growth stages. Neither sweep samples nor pan samples produced reliable estimates of the number of aphids per plant and, therefore, these sampling tools could not replace aphid counts on individual plants. Aphid counts and the binomial method gave similar control decisions with similar amounts of effort, but the aphid counting method required fewer plants to reach a decision. The same decisions were reached in 85–95% of fields by counting aphids on a minimum sample of 25 plants when the crop was in full bloom, or 20 plants at the green boll stage, as with samples of 50–100 plants.

Résumé

Les stratégies d’échantillonnage séquentiel basées sur l’abondance des pucerons ou sur les données présence- absence dans les plants infestés ont servie à élaborer des politiques de lutte chimique du Puceron de la pomme de terre, Macrosiphum euphorbiae, dans des champs de lin de l’ouest du Canada, à deux stades de croissance. Les stratégies ont été mises au point à partir d’études de la dispersion des pucerons dans les plants dans des carrés échantillons sur une période de 4 ans, puis essayées dans 51 cultures commerciales au Manitoba. La relation entre la variance (s2) et la densité moyenne des pucerons () par plant se traduit par l’équation suivante loges2 = 0,790 ± 0,050 + (1,649 ± 0,031) loge (n = 69, r2 = 0,98), aux deux stades de croissance des cultures. Ni les échantillons recueillis au filet fauchoir, ni ceux recueillis dans des bacs n’ont permis d’obtenir des estimations fiables du nombre de pucerons par plant et ces outils ne peuvent donc pas remplacer le dénombrement exact des pucerons dans un plant particulier. L’abondance des pucerons et les données présence–absence on donné lieu à des décisions semblables requérant des efforts de même importance, mais la méthode du dénombrement exact permet d’arriver aux décisions en utilisant moins de plants. Les mêmes conclusions ont été obtenues dans 85–95% des champs en comptant les pucerons sur un échantillon minimum de 25 plants au stade de la floraison, de 20 plants au stade de capsule verte, ou sur des échantillons de 50–100 plants ne tenant pas compte du stade.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechinski, E.J., Buntin, G.D., Pedigo, L.P., and Thorvilson, H.G.. 1983. Sequential count and decision plans for sampling green cloverworm (Lepidoptera: Noctuidae) larvae in soybean. Journal of Economic Entomology 76: 806812.CrossRefGoogle Scholar
Binns, M.R., and Nyrop, J.P.. 1992. Sampling insect populations for the purpose of IPM decision making. Annual Review of Entomology 37: 427453.CrossRefGoogle Scholar
Elliott, N.C., and Kieckhefer, R.W.. 1987. Spatial distributions of cereal aphids (Homoptera: Aphididae) in winter wheat and spring oats in South Dakota. Environmental Entomology 16: 896901.CrossRefGoogle Scholar
Elliott, N.C., Kieckhefer, R.W., and Walgenbach, D.D.. 1990. Binomial sequential sampling methods for cereal aphids in small grains. Journal of Economic Entomology 83: 13811387.CrossRefGoogle Scholar
Feng, M.C., Nowierski, R.M., and Zeng, Z.. 1993. Population of Sitobion avenae and Aphidius ervi on spring wheat in the northwestern United States. Entomologia Experimentalis et Applicata 67: 109117.CrossRefGoogle Scholar
Gerrard, D. J., and Chiang, H.C.. 1970. Density estimation of corn rootworm egg populations based upon frequency of occurrence. Ecology 51: 237245.CrossRefGoogle Scholar
Green, R.H. 1970. On fixed precision level sequential sampling. Researches in Population Ecology 12: 249251.CrossRefGoogle Scholar
Hodgson, W.A., Pond, D.D., and Munro, J.. 1974. Diseases and Pests of Potatoes. Canada Agriculture Publication 1492: 70 pp.Google Scholar
Iwao, S. 1975. A new method of sequential sampling to classify populations relative to a critical density. Researches in Population Ecology 16: 281288.CrossRefGoogle Scholar
Kieckhefer, R.W. 1975. Field populations of cereal aphids in South Dakota spring grains. Journal of Economic Entomology 68: 161164.CrossRefGoogle Scholar
Kuno, E. 1969. A new method of sequential sampling to obtain the population estimates with a fixed level of precision. Researches in Population Ecology 11: 127136.CrossRefGoogle Scholar
Kuno, E. 1986. Evaluation of statistical precision and design of efficient sampling for the population estimation based on frequency of occurrence. Researches in Population Ecology 28: 305319.CrossRefGoogle Scholar
Lange, W.H., and Bronson, L.. 1981. Insect pests of tomatoes. Annual Review of Entomology 26: 345371.CrossRefGoogle Scholar
Maiteki, G.A., and Lamb, R.J.. 1985. Spray timing and economic threshold for the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae), on field peas in Manitoba. Journal of Economic Entomology 78: 14491454.CrossRefGoogle Scholar
Maiteki, G.A. 1987. Sequential decision plan for control of pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae), on field peas in Manitoba. Journal of Economic Entomology 80: 605607.CrossRefGoogle Scholar
Mukerji, M.K., Olfert, O.O., and Doane, J.F.. 1988. Development of sampling designs for egg and larval populations of the wheat midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae), in wheat. The Canadian Entomologist 120: 497505.CrossRefGoogle Scholar
Nachman, G. 1981. A mathematical model of the functional relationship between density and spatial distribution of a population. Journal of Animal Ecology 50: 453460.CrossRefGoogle Scholar
Nyrop, J.P., and Simmons, G.A.. 1984. Errors incurred when using Iwao's sequential decision rule in insect sampling. Environmental Entomology 13: 14591465.CrossRefGoogle Scholar
SAS Institute Inc. 1990. SAS/STAT User's Guide. Version 6 ed. SAS Institute Inc., Cary, NC. 1686. pp.Google Scholar
Schaalje, G.B., and Butts, R.A.. 1992. Binomial sampling for predicting density of Russian wheat aphid (Homoptera: Aphididae) on winter wheat in the fall using a measurement error model. Journal of Economic Entomology 85: 11671175.CrossRefGoogle Scholar
Schaalje, G.B., Butts, R.A., and Lysyk, T.J.. 1991. Simulation studies of binomial sampling: A new variance estimator and density predictor, with special reference to the Russian wheat aphid (Homoptera: Aphididae). Journal of Economic Entomology 84: 140147.CrossRefGoogle Scholar
Southwood, T.R.E. 1978. Ecological Methods, 2nd ed. Chapman and Hall, London. 524 pp.Google Scholar
Taylor, L.R. 1961. Aggregation, variance and the mean. Nature (London) 189: 732735.Google Scholar
Taylor, L.R., Woiwood, I.P., and Perry, J.N.. 1978. The density-dependence of spatial behaviour and the rarity of randomness. Journal of Animal Ecology 47: 383406.CrossRefGoogle Scholar
Walgenbach, J.F. 1994. Distribution of parasitized and nonparasitized potato aphid (Homoptera: Aphididae) on staked tomato. Environmental Entomology 23: 795804.CrossRefGoogle Scholar
Walker, G.P., Madden, L.V., and Simonet, D.E.. 1984. Spatial dispersion and sequential sampling of the potato aphid, Macrosiphum euphorbiae (Homoptera: Aphididae), on processing-tomatoes in Ohio. The Canadian Entomologist 116: 10691075.CrossRefGoogle Scholar
Ward, S.A., Rabbinge, R., and Mantel, W.P.. 1985. The use of incidence counts for estimation of aphid populations. 1. Minimum sample size for required accuracy. Netherlands Journal of Plant Pathology 91: 9399.CrossRefGoogle Scholar
Wise, I.L., Lamb, R. J., and Kenaschuk, E.O.. 1995. Effects of the potato aphid Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae) on oilseed flax, and stage-specific thresholds for control. The Canadian Entomologist 127: 213224.CrossRefGoogle Scholar