Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T13:50:53.565Z Has data issue: false hasContentIssue false

Population patterns of two generalist forager bees on canola: effects of sowing season, plant genotype, meteorological factors, and coabundance

Published online by Cambridge University Press:  08 January 2024

Eduardo Engel*
Affiliation:
Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture - ESALQ/USP, 13418-900, Piracicaba, São Paulo, Brazil
Ana Lúcia de Paula Ribeiro
Affiliation:
Entomology Laboratory, Farroupilha Federal Institute, Campus São Vicente do Sul, 97420-000, Farroupilha, Rio Grande do Sul, Brazil
Alessandro Dal’Col Lúcio
Affiliation:
Department of Crop Science, Federal University of Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
Mauricio Paulo Batistella Pasini
Affiliation:
University of Cruz Alta, Cruz Alta, Rio Grande do Sul, Brazil
Rafael Pivotto Bortolotto
Affiliation:
University of Cruz Alta, Cruz Alta, Rio Grande do Sul, Brazil
Wesley Augusto Conde Godoy
Affiliation:
Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture - ESALQ/USP, 13418-900, Piracicaba, São Paulo, Brazil
*
Corresponding author: Eduardo Engel; Email: agron.engel@gmail.com

Abstract

Canola, Brassica napus Linnaeus var. oleifera, is one of the main oilseeds grown in the world. Pollination is required to ensure an acceptable yield. Among the main bee pollinators (Hymenoptera: Apidae) occurring in canola in southern Brazil are Apis mellifera (Linnaeus) (Apidae: Apini) and Trigona spinipes (Fabricius) (Apidae: Meliponini). Plant genotype, sowing season, meteorological factors, and abundance of competitors can influence the foraging rate of A. mellifera and T. spinipes in canola, which will impact yield. We evaluated the effect of plant genotype, sowing season, and meteorological factors on the abundance of foraging bees, as well as their coabundance and impacts on canola yield. Under the conditions of the study, we did not observe significant variation between genotypes and sowing season on bee abundance and canola yield. We note that the impact of temperature and relative humidity are important predictors of abundance of A. mellifera and T. spinipes. The temperature and relative humidity effects, however, differed according to bee species. Coabundance patterns indicated no evidence of competitive exclusion. Higher canola yields were obtained when both bee species had high population abundance.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Shelley Hoover

References

Abou-Shaara, H.F., Owayss, A.A., Ibrahim, Y.Y., and Basuny, N.K. 2017. A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux, 64: 455463. https://doi.org/10.1007/s00040-017-0573-8.CrossRefGoogle Scholar
Adegas, J.E.B. and Couto, R.H.N. 1992. Entomophilous pollination in rape (Brassica napus L var oleifera) in Brazil. Apidologie, 23: 203209.CrossRefGoogle Scholar
Advanta Seeds. 2021. Canola: our Hyola® range provides elite hybrids suitable for all growing regions. Available from https://dev.advantaseeds.com/br/canola/ [accessed 5 October 2023].Google Scholar
Akhtar, T., Aziz, M.A., Naeem, M., Ahmed, M.S., and Bodlah, I. 2018. Diversity and relative abundance of pollinator fauna of canola (Brassica napus L. var Chakwal Sarsoon) with managed Apis mellifera L. in Pothwar region, Gujar Khan, Pakistan. Pakistan Journal of Zoology, 50: 567573. https://doi.org/10.17582/journal.pjz/2018.50.2.567.573.CrossRefGoogle Scholar
Bertazzini, M. and Forlani, G. 2016. Intraspecific variability of floral nectar volume and composition in rapeseed (Brassica napus L. var. oleifera). Frontiers in Plant Science, 7: 113. https://doi.org/10.3389/fpls.2016.00288.CrossRefGoogle ScholarPubMed
Blazyte-Cereskiene, L., Vaitkevičiene, G., Venskutonyte, S., and Buda, V. 2010. Honey bee foraging in spring oilseed rape crops under high ambient temperature conditions. Zemdirbyste, 97: 6170.Google Scholar
Blochtein, B., Nunes-Silva, P., Halinski, R., Lopes, L., and Witter, S. 2014. Comparative study of the floral biology and of the response of productivity to insect visitation in two rapeseed cultivars (Brassica napus L.) in Rio Grande do Sul. Brazilian Journal of Biology, 74: 787794. http://doi.org/10.1590/1519-6984.02213.CrossRefGoogle ScholarPubMed
Brizola-Bonacina, A.K., Arruda, V.M., Alves-Junior, V.V., Chaud-Netto, J., and Polatto, L.P. 2012. Bee visitors of Quaresmeira flowers (Tibouchina granulosa Cogn.) in the region of Dourados (MS-Brasil). Sociobiology, 59: 12531268. https://doi.org/10.13102/sociobiology.v59i4.503.CrossRefGoogle Scholar
Brodie, J.F., Helmy, O.E., Mohd-Azlan, J., Granados, A., Bernard, H., Giordano, A.J., and Zipkin, E. 2018. Models for assessing local-scale co-abundance of animal species while accounting for differential detectability and varied responses to the environment. Biotropica, 50: 515. https://doi.org/10.1111/btp.12500.CrossRefGoogle Scholar
Chambó, E.D., de Oliveira, N.T.E., Garcia, R.C., Ruvolo-Takasusuki, M.C.C., and Arnaut de Toledo, V.A. 2017. Statistical modelling of insect behavioral response to changes in weather conditions in Brassica napus L. Arthropod-Plant Interactions, 11: 613621. https://doi.org/10.1007/s11829-017-9506-8.CrossRefGoogle Scholar
Clarke, D. and Robert, D. 2018. Predictive modelling of honey bee foraging activity using local weather conditions. Apidologie, 49: 386396. https://doi.org/10.1007/s13592-018-0565-3.CrossRefGoogle Scholar
Degrandi-Hoffman, G. and Chambers, M. 2006. Effects of honey bee (Hymenoptera: Apidae) foraging on seed set in self-fertile sunflowers (Helianthus annuus L.). Environmental Entomology, 35: 11031108. https://doi.org/10.1603/0046-225X-35.4.1103.CrossRefGoogle Scholar
de Mattos, I.M., Souza, J., and Soares, A.E.E. 2018. Analysis of the effects of climate variables on Apis mellifera pollen foraging performance. Arquivo Brasileira de Medicina Veterinária e Zootecnia, 70: 13011308. https://doi.org/10.1590/1678-4162-9373.CrossRefGoogle Scholar
Fuzaro, L., Xavier, N.L., Carvalho, F.J., Nery, F.A.N., Carvalho, S.M., and Andaló, V. 2018. Influence of pollination on canola seed production in the Cerrado of Uberlândia, Minas Gerais State, Brazil. Acta Scientiarum. Agronomy, 40: 39315. https://doi.org/10.4025/actasciagron.v40i1.39315.CrossRefGoogle Scholar
Giannini, T.C., Boff, S., Cordeiro, G.D., Cartolano, E.A., Veiga, A.K., Imperatriz-Fonseca, V.L., and Saraiva, A.M. 2015a. Crop pollinators in Brazil: a review of reported interactions. Apidologie, 46: 209223. https://doi.org/10.1007/s13592-014-0316-z.CrossRefGoogle Scholar
Giannini, T.C., Garibaldi, L.A., Acosta, A.L., Silva, J.S., Maia, K.P., Saraiva, A.M., et al. 2015b. Native and non-native supergeneralist bee species have different effects on plant–bee networks. PLOS One, 10: e0137198. https://doi.org/10.1371/journal.pone.0137198.CrossRefGoogle ScholarPubMed
Gotelli, N.J. and Ulrich, W. 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia, 162: 463477. https://doi.org/10.1007/s00442-009-1474-y.CrossRefGoogle ScholarPubMed
Halinski, R., Dos Santos, C.F., Kaehler, T.G., and Blochtein, B. 2018. Influence of wild bee diversity on canola crop yields. Sociobiology, 65: 751759. https://doi.org/10.13102/sociobiology.v65i4.3467.CrossRefGoogle Scholar
Hatjina, F., Costa, C., Büchler, R., Uzunov, A., Drazic, M., and Filipi, J., et al. 2014. Population dynamics of European honey bee genotypes under different environmental conditions. Journal of Apicultural Research, 53: 233247. https://doi.org/10.3896/IBRA.1.53.2.05.CrossRefGoogle Scholar
Hudewenz, A., Pufal, G., Bögeholz, A.L., and Klein, A.M. 2014. Cross-pollination benefits differ among oilseed rape varieties. Journal of Agricultural Science, 152: 770778. https://doi.org/10.1017/S0021859613000440.CrossRefGoogle Scholar
Joshi, N.C. and Joshi, P.C. 2010. Foraging behaviour of Apis spp. on apple flowers in a subtropical environment. New York Science Journal, 3: 7176.Google Scholar
Kauffeld, N.M., Sorensen, E.L., and Painter, R.H. 1969. Stability of attractiveness of alfalfa clones to honeybees under varying locations, seasons, and years. Crop Science, 9: 225228. https://doi.org/10.2135/cropsci1969.0011183x000900020035x.CrossRefGoogle Scholar
Kevan, P.G., Lee, H., and Shuel, R.W. 1991. Sugar ratios in nectars of varieties of canola (Brassica napus). Journal of Apicultural Research, 30: 99102. https://doi.org/10.1080/00218839.1991.11101240.CrossRefGoogle Scholar
Lilley, J.M., Flohr, B.M., Whish, J.P.M., Farre, I., and Kirkegaard, J.A. 2018. Defining optimal sowing and flowering periods for canola in Australia. Field Crops Research, 235: 118128. https://doi.org/10.1016/j.fcr.2019.03.00.CrossRefGoogle Scholar
Lopes, G.N., Souza-Filho, M.F., Gotelli, N.J., Lemos, L.J.U., Godoy, W.A.C., and Zucchi, R.A. 2015. Temporal overlap and co-occurrence in a guild of sub-tropical tephritid fruit flies. PLOS One, 10: e0132124. https://doi.org/10.1371/journal.pone.0132124.CrossRefGoogle Scholar
Marini, L., Tamburini, G., Petrucco-Toffolo, E., Lindström, S.A.M., Zanetti, F., Mosca, G., and Bommarco, R. 2015. Crop management modifies the benefits of insect pollination in oilseed rape. Agriculture, Ecosystems & Environment, 207: 6166. https://doi.org/10.1016/j.agee.2015.03.027.CrossRefGoogle Scholar
Marsaro Júnior, A.L. and Pereira, P.R.V. da S. 2017. Insetos-pragas, predadores e polinizadores da cultura da canola [Pest insects, predators and pollinators in canola culture]. Comunicado Técnico, 370. Embrapa Centro Nacional de Pesquisa de Trigo, Passo Fundo, Rio Grande do Sul, Brazil. 5 pp.Google Scholar
Nuseed Brazil. 2022. Diamond: óleo de alta qualidade [Diamond: high-quality oil]. Available from https://nuseed.com/br/wp-content/uploads/sites/15/2022/04/Flyer-Canola-Diamond-Mar-2023_175x25cm.pdf [accessed 5 October 2023].Google Scholar
Ouvrard, P. and Jacquemart, A.L. 2019. Review of methods to investigate pollinator dependency in oilseed rape (Brassica napus). Field Crops Research, 231: 1829. https://doi.org/10.1016/j.fcr.2018.11.006.CrossRefGoogle Scholar
Picard-Nizou, A.L., Pham-Delègue, M.H., Kerguelen, V., Douault, P., Marilleau, R., Olsen, L., et al. 1995. Foraging behaviour of honey bees (Apis mellifera L.) on transgenic oilseed rape (Brassica napus L. var. oleifera). Transgenic Research, 4: 270276. https://doi.org/10.1007/BF01969121.CrossRefGoogle Scholar
Polatto, L.P., Chaud-Netto, J., and Alves-Junior, V.V. 2014. Influence of abiotic factors and floral resource availability on daily foraging activity of bees: influence of abiotic and biotic factors on bees. Journal of Insect Behavior, 27: 593612. https://doi.org/10.1007/s10905-014-9452-6.CrossRefGoogle Scholar
R Core Team. 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/ [accessed 5 October 2023].Google Scholar
Roberts, S.P. and Harrison, J.F. 1999. Mechanisms of thermal stability during flight in the honeybee Apis mellifera . Journal of Experimental Biology, 202: 15231533. https://doi.org/10.1242/jeb.202.11.1523.CrossRefGoogle ScholarPubMed
Sabbahi, R., DeOliveira, D., and Marceau, J. 2005. Influence of honey bee (Hymenoptera: Apidae) density on the production of canola (Crucifera: Brassicacae). Journal of Economic Entomology, 98: 367372. https://doi.org/10.1093/jee/98.2.367.CrossRefGoogle ScholarPubMed
Soares, K.O., Lima, M.V., Evangelista-Rodrigues, A., Silva, A.A.F., Silva, F.J. de A., Lima, A.I.B.L.C., and Da Costa, C.R.G. 2019. Factors influencing the foraging behavior of Trigona spinipes (Apidae, Meliponinae). Biological Rhythm Research, 52: 11091119. https://doi.org/10.1080/09291016.2019.1616903.CrossRefGoogle Scholar
Stabentheiner, A., Kovac, H., and Brodschneider, R. 2010. Honeybee colony thermoregulation: regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLOS One, 5: e8967. https://doi.org/10.1371/JOURNAL.PONE.0008967.CrossRefGoogle ScholarPubMed
Tan, K., Yang, S., Wang, Z.W., Radloff, S.E., and Oldroyd, B.P. 2012. Differences in foraging and broodnest temperature in the honey bees Apis cerana and A. mellifera . Apidologie, 43: 618623. https://doi.org/10.1007/s13592-012-0136-y.CrossRefGoogle Scholar
Thom, M.D., Eberle, C.A., Forcella, F., Gesch, R., Weyers, S., and Lundgren, J.G. 2016. Nectar production in oilseeds: food for pollinators in an agricultural landscape. Crop Science, 56: 727739. https://doi.org/10.2135/cropsci2015.05.0322.CrossRefGoogle Scholar
Tomm, G.O. 2007. Indicativos tecnológicos para produção de canola no Rio Grande do Sul [Technological indicators for canola production in Rio Grande do Sul]. Embrapa Trigo, Passo Fundo, Rio Grande do Sul, Brazil.Google Scholar
Tomm, G.O. 2013. Cultivo de Canola. Sistemas de Produção 51 [Canola cultivation. Production systems 51]. Available from http://canolabr.com/system/filemanager/files/tecnologias_anexos_2_74_117_1537376421.pdf [accessed 5 October 2023].Google Scholar
Valério, D.A., Tres, A., Tetto, A.F., Soares, R.V., and Wendling, W.T. 2018. Holdridge life zone classification for the southern Brazilian state ‘Rio Grande do Sul.’ Ciencia Florestal, 28: 17761788. https://doi.org/10.5902/1980509835337.CrossRefGoogle Scholar
Veech, J.A. 2013. A probabilistic model for analysing species co-occurrence. Global Ecology and Biogeography, 22: 252260. https://doi.org/10.1111/j.1466-8238.2012.00789.x.CrossRefGoogle Scholar
Vitali-Veiga, M.J. and Machado, V.L.L. 2000. Visitantes florais de Erythrina speciosa Andr. (Leguminosae) [Floral visitors of Erythrina speciosa Andr. (Leguminosae)]. Revista Brasileira de Zoologia, 17: 369383. https://doi.org/10.1590/s0101-81752000000200007.CrossRefGoogle Scholar
Wood, S.N. 2017. Generalized additive models: an introduction with R. 2nd edition. Chapman & Hall/CRC, Boca Raton, Florida, United States of America. https://doi.org/10.1214/ss/1177013609.CrossRefGoogle Scholar
Woods, W.A. Jr, Heinrich, B., and Stevenson, R.D. 2005. Honeybee flight metabolic rate: does it depend upon air temperature? Journal of Experimental Biology, 208: 11611173. https://doi.org/10.1242/jeb.01510.CrossRefGoogle ScholarPubMed
Woyke, J., Wilde, J., and Wilde, M. 2003. Flight activity reaction to temperature changes in Apis dorsata, Apis laboriosai, and Apis mellifera . Journal of Apicultural Science, 47: 7380.Google Scholar