Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T17:04:57.818Z Has data issue: false hasContentIssue false

PEST MANAGEMENT OF DOUGLAS-FIR TUSSOCK MOTH, ORGYIA PSEUDOTSUGATA (LEPIDOPTERA: LYMANTRIIDAE): MONITORING ENDEMIC POPULATIONS WITH PHEROMONE TRAPS TO DETECT INCIPIENT OUTBREAKS

Published online by Cambridge University Press:  31 May 2012

R.F. Shepherd
Affiliation:
Pacific Forest Research Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
T.G. Gray
Affiliation:
Pacific Forest Research Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
R.J. Chorney
Affiliation:
British Columbia Ministry of Forests, 515 Columbia St., Kamloops, British Columbia, Canada V2C 2T7
G.E. Daterman
Affiliation:
U.S. Forest Service, Forest Science Laboratory, 3200 Jefferson Way, Corvallis, Oregon, USA 97331

Abstract

The numbers of Douglas-fir tussock moths (Orgyia pseudotsugata) (Lepidoptera: Lymantriidae) caught in sticky, delta-shaped pheromone traps baited with different concentrations of synthetic lures were compared with egg-mass densities and subsequent defoliation throughout a population cycle. A lure containing 0.01% pheromone by weight in the form of a 3 × 5-mm polyvinylchloride rod provided more consistent catches than pheromone concentrations of 0.0001, 0.001, 0.1, or 1.0%. Trap saturation occurred when >40 moths per trap were caught. To achieve a standard error of 30%, 6 traps were required at each site. There was a poor correlation between numbers of moths caught and egg-mass density or defoliation estimates in the following generation, but a threshold density was found that provides a warning of an incipient outbreak. Ground surveys for egg masses are recommended to confirm suspected infestations after continuous increases in moth catches for 2 to 3 years or if an average of 25 moths or more per trap has been caught.

Résumé

On a comparé le nombre de papillons de la chenille à houppes du douglas (Orgyia pseudotsugata) (Lépidoptères : Lymantriidés), capturés au moyen de pièges adhésifs à phéromone (phéromones de synthèse à diverses concentrations) en forme de delta, à la densité des masses d'oeufs et à la défoliation ultérieure durant tout le cycle évolutif de leur population. Un appât contenant, en masse, 0,01% de phéromone sous la forme d'une tige de 3 mm sur 5 de chlorure de polyvinyle a permis des captures plus constantes que les taux de phéromone de 0,0001, de 0,001, de 0,1 ou de 1,0 %. Un piège était “saturé” lorsque plus de 40 papillons y étaient capturés. Pour que l'erreur type soit de 30%, il fallait 6 pièges dans chaque station. La corrélation entre le nombre de captures et la densité des masses d'oeufs ou les estimations de la défoliation au cours de la génération ultérieure était pauvre, mais on a observé une densité qui servait de seuil d'avertissement du début d'une infestation. Les relevés au sol des masses d'oeufs sont recommandés pour confirmer des infestations qu'on soupçonne après des augmentations continues des captures, pendant 2 à 3 ans, ou si celles-ci sont, en moyenne, d'au moins 25 papillons par piège.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrewartha, H.G., and Birch, L.C.. 1954. The distribution and abundance of animals. Univ. Chicago Press, Chicago, IL.Google Scholar
Bogenschutz, H. 1979. Survey of pine defoliators in Central Europe using sex attractants. pp. 5165in Berryman, A.A., and Safranyik, L. (Eds.), Dispersal of forest insects: Evaluation, theory and management implications. Proceedings of Second IUFRO Conf.Google Scholar
Daterman, G.E. 1978. Monitoring and early detection. pp. 99102in Brooks, M.H., Stark, R.W., and Campbell, R.W. (Eds.), the Douglas-fir tussock moth: a synthesis. U.S. Forest Service Tech. Bull. 1585.Google Scholar
Daterman, G.E. 1980. Pheromone responses of forest lepidoptera: implications for dispersal and pest management. pp. 251265in Berryman, A.A., and Safranyik, L. (Eds.), Dispersal of forest insects: Evaluation, theory and management implications. Proceedings of Second IUFRO Conf.Google Scholar
Daterman, G.E. 1982. Monitoring insects with pheromones: trapping objectives and bait formulations. pp. 195212in Kydonieus, A.F., and Beroza, M. (Eds.), Insect suppression with controlled release pheromone systems. CRC Press Inc., Boca Raton, FL.Google Scholar
Daterman, G.E., Livingston, R.L., Wenz, J.M., and Sower, L.L.. 1979. How to use pheromone traps to determine outbreak potential. USDA Douglas-fir Tussock Moth Handb. 546.Google Scholar
Fitzgerald, T.D., St. Clair, A.D., Daterman, G.E., and Smith, R.G.. 1973. Slow release plastic formulation of the cabbage looper pheromone cis-7-dodecenyl acetate: release rate and biological activity. Environ. Ent. 2: 607610.CrossRefGoogle Scholar
Iwao, S., and Kuno, E.. 1968. Use of the regression of mean crowding on mean density for estimating sample size on the transformation of data for the analysis of variance. Res. Popul. Ecol. 10: 210214.CrossRefGoogle Scholar
Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36: 130.CrossRefGoogle Scholar
Mason, R.R. 1977. Sampling low density populations of Douglas-fir tussock moth by frequency of occurrence in the lower tree crown. USDA Forest Service Res. Paper PNW-216.Google Scholar
Mason, R.R., and Luck, R.F.. 1978. Population growth and regulation. pp. 4147in Brooks, M.H., Stark, R.W., and Campbell, R.W. (Eds.), The Douglas-fir tussock moth: a synthesis. U.S. Forest Service Tech. Bull. 1585.Google Scholar
Shepherd, R.F. 1977. A classification of western Canadian defoliating forest insects by outbreak spread characteristics and habitat restriction. pp. 8088in Kulman, H.M., and Chiang, H.C. (Eds.), Insect ecology. Univ. Minn. Agric. Exp. Stn. Tech. Bull. 310.Google Scholar
Shepherd, R.F. 1979. Comparison of the daily cycle of adult behavior of five forest lepidoptera from western Canada, and their response to pheromone traps. Mitt. Schweiz Entomol. Ges. 52: 157168.Google Scholar
Shepherd, R.F. (Ed.). 1980. Operational field trials against the Douglas-fir tussock moth with chemical and biological insecticides. Can. For. Serv., Pac. For. Res. Cent., Inf. Rep. BC-X-201.Google Scholar
Shepherd, R.F., Otvos, I.S., and Chorney, R.J.. 1984 a. Pest management of Douglas-fir tussock moth (Lepidoptera: Lymantriidae): a sequential sampling method to determine egg-mass density. Can. Ent. 116: 10411049.CrossRefGoogle Scholar
Shepherd, R.F., Otvos, I.S., Chorney, R.J., and Cunningham, J.C.. 1984 b. Pest management of Douglas-fir tussock moth (Lepidoptera: Lymantriidae): prevention of an outbreak through early treatment with a nuclear polyhedrosis virus by ground and aerial applications. Can. Ent. 116: 15331542.CrossRefGoogle Scholar
Smith, R.G., Daterman, G.E., and Daves, G.D. Jr., 1975. Douglas-fir tussock moth: sex pheromone identification and synthesis. Science 188: 6364.CrossRefGoogle Scholar
Snedecor, G. W. 1956. Statistical methods. Iowa State College Press, Ames, IA.Google Scholar
Sugden, B.A. 1957. A brief history of outbreaks of the Douglas-fir tussock moth, Hemerocampa pseudotsugata McD., in British Columbia. Proc. Ent. Soc. British Columbia 54: 3739.Google Scholar
Wickman, B.E. 1978. Tree mortality and top kill related to defoliation by the Douglas-fir tussock moth in the Blue Mountains outbreak. USDA Forest Service Res. Paper PNW-233.Google Scholar