Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T04:21:58.688Z Has data issue: false hasContentIssue false

PATTERNS OF MORPHOLOGICAL AND REPRODUCTIVE VARIATION IN STENONEMA MAYFLIES (EPHEMEROPTERA: HEPTAGENIIDAE) IN EASTERN LAKE HURON

Published online by Cambridge University Press:  31 May 2012

Ian D. Martin
Affiliation:
Biological Research Section, Ontario Hydro
Michael A. Gates
Affiliation:
Department of Zoology, University of Toronto

Abstract

Significant variation in the morphology of late-instar nymphs of Stenonema tripunctatum (Banks) in Lake Huron could not be ascribed to their proximity to warm-water plumes originating from the Bruce Nuclear Power Development, by either multivariate or univariate analyses of size and shape. Major sources of variation in S. tripunctatum were developmental state and sex. Nymphs collected just prior to emergence had low values of transverse measurements in anterior regions (inter-orbital width, prothoracic width), whereas males and females were separated by these measurements and other components of head geometry.

No significant effects of thermal exposure were found in the reproductive development of S. tripunctatum, but this species is most commonly found below depths at which thermal-plume effects are expected. Based on a small but representative sample, ultimate-instar nymphs of Stenonema vicarium (Walker) from a depth of 3 m contained significantly fewer eggs and allocated a significantly lower proportion of biomass (dry weight) to reproduction in locations with higher temperatures.

Résumé

D'après des analyses uni- ou multivariates de grandeur et de forme, la variation significative dans la morphologie des stades tardifs des nymphes de Stenonema tripunctatum (Banks) dans le lac Huron n'a pas pu être attribuée à leur proximité aux panaches d'eau chaude provenant du développement de la centrale nucléaire Bruce. Les sources principales de variation dans S. tripunctatum étaient dans le stade de développement et le sexe. Les valeurs des mesures transverses des régions antérieures (largeur inter-orbital et largeur prothoracique) des nymphes prélevées juste avant emergence étaient basses, tandis que les mâles et les femelles étaient séparés par ces mesures et d'autres composants de la géométrie de la tête.

Aucun effet significatif à l'exposition thermale sur le développement reproductif de S. tripunctatum n'a été trouvé, cependant cet espèce est trouvée le plus souvent sous la profondeur où les effets de la panache thermale sont attendus. Basé sur un petit échantillon représentif, les nymphes de Stenonema vicarium (Walker) provenant d'une profondeur de 3 m contenaient significativement moins d'oeufs et allouaient une proportion significativement plus basse de biomasse (poids sec) à la reproduction dans des endroits à températures plus élevées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bednarik, A. F. and McCafferty, W. P.. 1979. Biosystematic revision of the genus Stenonema (Ephemeroptera: Heptageniidae). Can. Bull. Fish. Aquatic Sciences 201.Google Scholar
Clifford, H. F. 1970. Variability of linear measurements throughout the life cycle of the mayfly Leptophlebia cupida (Say) (Ephemeroptera: Leptophlebiidae). Pan-Pacif. Ent. 46: 98106.Google Scholar
Clifford, H. F. and Boerger, H.. 1974. Fecundity of mayflies (Ephemeroptera), with special reference to mayflies of a brown-water stream of Alberta, Canada. Can. Ent. 106: 11111119.CrossRefGoogle Scholar
Clifford, H. F., Hamilton, H., and Killins, B. A.. 1979. Biology of the mayfly Leptophlebia cupida (Say) (Ephemeroptera: Leptophlebiidae). Can. J. Zool. 57: 10261045.CrossRefGoogle Scholar
Gore, J. A. 1977. Reservoir manipulations and benthic invertebrates in a prairie river. Hydrobiologia 55: 113123.CrossRefGoogle Scholar
Howmiller, R. P. 1972. Effects of preservatives on weights of some common macrobenthic invertebrates. Trans. Am. Fish. Soc. 101: 743746.2.0.CO;2>CrossRefGoogle Scholar
Humpesch, U. H. and Elliot, J. M.. 1980. Effect of temperature on the hatching time of eggs of three Rhithrogena spp. (Ephemeroptera) from Austrian streams and an English stream and river. J. Anim. Ecol. 49: 643661.CrossRefGoogle Scholar
Ide, F. P. 1935. The effect of temperature on the distribution of the mayfly fauna of a stream. Publ. Ont. Fish. Res. Lab. 50. 76 pp.Google Scholar
Landahl, C. and Nagell, B.. 1978. Influence of the season and of preservation methods on wet- and dry weights of larvae of Chironomus plumosus L. Int. Revue ges. Hydrobiol. Hydrogr. 63: 405410.CrossRefGoogle Scholar
Langford, T. E. and Daffern, J. R.. 1975. The emergence of insects from a British river warmed by power station cooling-water. Part I. The use and performance of insect emergence traps in a large spate-river and the effects of various factors on total catches, upstream and downstream of the cooling-water outfalls. Hydrobiologia 46: 71114.CrossRefGoogle Scholar
Lehmkuhl, D. M. 1972. Change in thermal regime as a cause of reduction of benthic fauna downstream from a reservoir. J. Fish. Res. Bd Can. 29: 13291332.CrossRefGoogle Scholar
Morrison, D. F. 1967. Multivariate Statistical Methods. McGraw-Hill, NY.Google Scholar
Needham, J. G., Traver, J. R., and Hsu, Y.. 1935. The biology of mayflies, with a systematic account of North American species. Comstock, Ithaca, NY. 795 pp.Google Scholar
Obrdlik, P., Adamek, Z., and Zahradka, J.. 1979. Mayfly fauna (Ephemeroptera) and the biology of species Potomanthus luteus (L.) in a warmed stretch of the Oslava River. Hydrobiologia 67: 129140.CrossRefGoogle Scholar
Sweeney, B. W. 1978. Bioenergetic and developmental response of a mayfly to thermal variation. Limnol. Oceanogr. 23: 461477.Google Scholar
Sweeney, B. W. and Vannote, R. L.. 1978. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444446.CrossRefGoogle ScholarPubMed
Sweeney, B. W. and Vannote, R. L.. 1981. Ephemerella mayflies of White Clay Creek: bioenergetic and ecological relationships among six coexisting species. Ecology 62: 13531369.CrossRefGoogle Scholar
Tatsuoka, M. M. 1971. Multivariate Analysis. Wiley, NY. 310 pp.Google Scholar
Vannote, R. L. and Sweeney, B. W.. 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. 115: 667695.CrossRefGoogle Scholar
Ward, J. V. and Stanford, J. A.. 1979. Ecological factors controlling stream zoobenthos with emphasis on thermal modification of regulated streams. pp. 35–55 in Ward, J. V. and Stanford, J. A. (Eds.), The Ecology of Regulated Streams. Plenum, NY. 398 pp.CrossRefGoogle Scholar