Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T15:26:56.507Z Has data issue: false hasContentIssue false

PATTERNS IN MAYFLY (EPHEMEROPTERA) WING LENGTH: ADAPTATION TO DISPERSAL?

Published online by Cambridge University Press:  31 May 2012

Lynda D. Corkum
Affiliation:
Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Abstract

Using regression analysis on data compiled from the literature, I compared relationships (forewing versus body length) of mayfly imagoes, as a measure of dispersal, between suborders (Schistonota and Pannota) and among habitat type (lotic, lentic, and mixed). There were no significant differences in slopes or intercepts of the regression lines between sexes. Forewing length changed less markedly with body size for species within the ancestral Schistonota than the Pannota. Regression lines for lake and river forms intersect at 7.85 mm (wing length) and 7.30 mm (body length). Small (body length < 7.3 mm) lentic mayflies have proportionately longer wings than small riverine forms. Large (body length > 7.3 mm) riverine mayflies have proportionately longer wings than lentic forms. Based on these relationships, small lake-dwelling mayflies and large riverine mayflies are best able to disperse. Mayfly species occurring in mixed (both rivers and lakes) habitats exhibited allometric relationships similar to mayflies restricted to rivers.

Résumé

En me basant sur des regressions effectuées sur des données publiées, j’ai comparé la relation — longueur des ailes antérieures-longueur du corps—des imagos d’éphémères, afin de comparer leur capacité de dispersion entre sous-ordres (Schistonota et Pannota) et habitats (lotique, lentique et mixte). Il n’y avait pas de différence significative entre les sexes pour la pente ou le point d’interception des droites de régression. La longueur des ailes changeait moins avec la taille du corps chez les espèces du groupe ancien Schistonota, que chez celles des Pannota. Le point d’intersection des régressions pour les espèces de lacs et de rivières se situait à 7,85 mm (longueur des ailes) et 7,30 mm (longueur du corps). Les petits (longueur < 7,3 mm), éphémères lentiques ont les ailes proportionnellement plus longues que les petits éphémères des rivières. Les gros (longueur > 7,3 mm), éphémères des rivières ont les ailes proportionnellement plus longues que les formes lentiques. Sur la base de ces relations, les éphémères des lacs de petite taille et les grosses espèces des rivières auraient les meilleures capacités dispersives. Les éphémères d’habitats mixtes (lacs et rivières) ont des relations allométriques semblables aux éphémères limités aux rivières.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R.K., and Edmunds, G.F. Jr., 1959. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). I. The subgenus Timpanoga. Can. Ent. 91: 5158.CrossRefGoogle Scholar
Allen, R.K., and Edmunds, G.F. Jr., 1961. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). II. The genus Caudatella. Ann. ent. Soc. Am. 54: 603612.CrossRefGoogle Scholar
Allen, R.K., and Edmunds, G.F. Jr., 1962 a. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). IV. The subgenus Dannella. J. Kansas ent. Soc. 35: 333338.Google Scholar
Allen, R.K., and Edmunds, G.F. Jr., 1962 b. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). V. The subgenus Drunella in North America. Misc. Publ. ent. Soc. Am. 3: 145179.Google Scholar
Allen, R.K., and Edmunds, G.F. Jr., 1963 a. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). VI. The subgenus Seratella. Ann. ent. Soc. Am. 56: 583600.CrossRefGoogle Scholar
Allen, R.K., and Edmunds, G.F. Jr., 1963 b A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). VII. The subgenus Eurylophella. Can. Ent. 95: 597623.CrossRefGoogle Scholar
Allen, R.K., and Edmunds, G.F. Jr., 1965. A revision of the genus Ephemerella (Ephemeroptera, Ephemerellidae). VIII. The subgenus Ephemerella in North America. Misc. Publ. ent. Soc. Am. 4: 243282.Google Scholar
Berner, L. 1950. The mayflies of Florida. University of Florida Press, Gainesville. 267 pp.Google Scholar
Berner, L. 1978. A review of the mayfly family Metretopodidae. Trans. Am. ent. Soc. 104: 91137.Google Scholar
Brittain, J.E. 1982. Biology of mayflies. Annu. Rev. ent. 27: 119147.CrossRefGoogle Scholar
Brown, E.S. 1951. The relation between migration-rate and type of habitat in aquatic insects, with special reference to certain species of Corixidae. Proc. zool. Soc. Lond. 121: 539545.CrossRefGoogle Scholar
Burks, B.D. 1953. The mayflies, or Ephemeroptera, of Illinois. Bull. Ill. Nat. Hist. Surv. 26: 1216.CrossRefGoogle Scholar
Carle, F.L. 1977. Description of a new species of Stenonema (Ephemeroptera: Heptageniidae) from Virginia. Ann. ent. Soc. Am. 70: 711714.CrossRefGoogle Scholar
Carle, F.L. 1978. A new species of Ameletus (Ephemeroptera: Siphlonuridae) from Western Virginia. Ann. ent. Soc. Am. 71: 581584.CrossRefGoogle Scholar
Carle, F.L., and Lewis, P.A.. 1978. A new species of Stenonema (Ephemeroptera, Heptageniidae) from eastern North America. Ann. ent. Soc. Am. 71: 285288.CrossRefGoogle Scholar
Donald, D.B., and Patriquin, D.E.. 1983. The wing length of lentic Capniidae (Plecoptera) and its relationship to elevation and Wisconsin glaciation. Can. Ent. 115: 921926.CrossRefGoogle Scholar
Edmunds, G.F. Jr., 1978. Ephemeroptera. pp. 57–80 in Merritt, R.W., and Cummins, K.W. (Eds.), An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publ. Co., Dubuque, Iowa. 441 pp.Google Scholar
Edmunds, G.F. Jr., Jensen, S.L., and Berner, L.. 1976. The mayflies of North and Central America. The University of Minnesota, Minneapolis. 330 pp.Google Scholar
Edmunds, G.F. Jr., and Traver, J.R.. 1954. The flight mechanics and evolution of wings of Ephemeroptera, with notes on the archetype insect wing. J. Wash. Acad. Sci. 44: 390400.Google Scholar
Flannagan, P.M., and Flannagan, J.F.. 1984. The post-glacial origin and present distribution of the mayflies (Ephemeroptera) of Manitoba, Canada. pp. 149–169 in Landa, V., Soldan, T., and Tonner, M. (Eds.), Proc. IVth Intern. Conf. Ephemeroptera. Czechoslovak Academy of Sciences, Ceske Budejovice. 345 pp.Google Scholar
Gordon, E.L. 1933. Notes on the ephemerid genus Leptophlebia. Bull. Brooklyn ent. Soc. 28: 116134.Google Scholar
Gould, S.J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41: 587640.CrossRefGoogle ScholarPubMed
Greenewalt, C.H. 1962. Dimensional relationships for flying animals. Smithsonian Misc. Coll. 144: 146.Google Scholar
Harper, F., and Harper, P.P.. 1981. Northern Canadian mayflies (Insecta; Ephemeroptera), records and descriptions. Can. J. Zool. 59: 17841789.CrossRefGoogle Scholar
Harper, F., and Hawkins, C.P.. 1984. Description of the imagines of Ephemerella verruca Allen and Edmunds (Ephemeroptera: Ephemerellidae). Aquatic Insects 6: 1316.CrossRefGoogle Scholar
Harrison, R.G. 1980. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11: 95118.CrossRefGoogle Scholar
Hubbard, M.D., and Peters, W.L.. 1978. Environmental requirements and pollution tolerance of Ephemeroptera. U.S. Environmental Protection Agency, EPA-600/4-78-061. 461 pp.Google Scholar
Huxley, J.S. 1972. Problems of relative growth (rpt. of 1932 ed.). Dover, New York. 312 pp.Google Scholar
Ide, F.P. 1954. The nymph of Rhithrogena impersonata (Ephemerida) and a new closely related species from the same locality in southern Ontario. Can. Ent. 86: 348356.CrossRefGoogle Scholar
Ide, F.P. 1955. Two species of mayflies representing southern groups occurring at Winnipeg, Manitoba (Ephemeroptera). Ann. ent. Soc. Am. 48: 616.CrossRefGoogle Scholar
Johnson, C.G. 1969. Migration and dispersal of insects by flight. Methuen, London. 763 pp.Google Scholar
Kilgore, J.I., and Allen, R.K.. 1973. Mayflies of the southwest: new species, descriptions, and records (Ephemeroptera). Ann. ent. Soc. Am. 66: 321332.CrossRefGoogle Scholar
Kondratieff, B.C., and Voshell, J.R. Jr., 1984. The North and Central American species of Isonychia (Ephemeroptera: Oligoneuriidae). Trans. Am. ent. Soc. 110: 129244.Google Scholar
Lehmkuhl, D.M. 1976. Additions to the taxonomy, zoogeography, and biology of Analetris eximia (Acantha-metropodinae: Siphlonuridae: Ephemeroptera). Can. Ent. 108: 199207.CrossRefGoogle Scholar
Lehmkuhl, D.M. 1980. Temporal and spatial changes in the Canadian insect fauna: patterns and explanation. The Prairies. Can. Ent. 112: 11451159.CrossRefGoogle Scholar
Lewis, P.A. 1974. Three new Stenonema species from eastern North America (Heptageniidae: Ephemeroptera). Proc. ent. Soc. Wash. 76: 347355.Google Scholar
Madsen, B.L., Bengtsson, J., and Butz, I.. 1977. Upstream movement by some Ephemeroptera species. Arch. Hydrobiol 81: 119127.Google Scholar
McCafferty, W.P. 1985. The Ephemeroptera of Alaska. Proc. ent. Soc. Wash. 87: 381386.Google Scholar
McCafferty, W.P., and Edmunds, G.F. Jr., 1979. The higher classification of the Ephemeroptera and its evolutionary basis. Ann. ent. Soc. Am. 72: 512.CrossRefGoogle Scholar
McCafferty, W.P., and Pereira, C.. 1984. Effects of developmental thermal regimes on two mayfly species and their taxonomic interpretation. Ann. ent. Soc. Am. 77: 6987.CrossRefGoogle Scholar
McLachlan, A. 1985. The relationship between habitat predictability and wing length in midges (Chironomidae). Oikos 44: 391397.CrossRefGoogle Scholar
Müller, K. 1954. Investigations on the organic drift in north Swedish streams. Rep. Inst. Freshw. Res. Drottningholm 35: 133148.Google Scholar
Müller, K. 1982. The colonization cycle of freshwater insects. Oecologia 52: 202207.CrossRefGoogle ScholarPubMed
Needham, J.G., Traver, J.R., and Hsu, Y.C.. 1935. The biology of mayflies with a systematic account of North American species. Comstock Publ. Co., New York. 759 pp.Google Scholar
Pescador, M.L., and Berner, L.. 1981. The mayfly family Baetiscidae (Ephemeroptera). Part II. Biosystematics of the genus Beatisca. Trans. Am. ent. Soc. 107: 163228.Google Scholar
Pescador, M.L., and Peters, W.L.. 1980. The revision of the genus Homoeoneuria (Ephemeroptera: Oligoneuridae). Trans. Am. ent. Soc. 106: 357393.Google Scholar
Riek, E.F. 1970. Ephemeroptera. pp. 224–240 in Waterhouse, D.F. (Ed.), The Insects of Australia. Melbourne University Press, Carlton, Victoria. 1029 pp.Google Scholar
Roos, T. 1957. Studies on upstream migration in adult stream-dwelling insects. I. Rep. Inst. Freshw. Res. Drottningholm 38: 167193.Google Scholar
Savage, H.M. 1983. Wing evolution within Miroculis and related genera (Ephemeroptera: Leptophlebiidae) from northern South America. Z. zool. Syst. Evolut. -forsch. 21: 124142.CrossRefGoogle Scholar
Smock, L.A. 1980. Relationships between body size and biomass of aquatic insects. Freshwat. Biol. 10: 375383.CrossRefGoogle Scholar
Snedecor, G.W., and Cochran, W.G.. 1967. Statistical methods, 6th ed. The Iowa University Press, Ames, Iowa. 593 pp.Google Scholar
Sweeney, B.W., and Vannote, R.L.. 1978. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444446.CrossRefGoogle ScholarPubMed