Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-27T16:45:43.051Z Has data issue: false hasContentIssue false

MULTIVARIATE ANALYSIS OF THE POPULATION STRUCTURE OF SITONA HISPIDULUS (COLEOPTERA: CURCULIONIDAE) IN ALFALFA FIELD SOIL

Published online by Cambridge University Press:  31 May 2012

M.A. Quinn
Affiliation:
Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA 16802
A.A. Hower
Affiliation:
Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA 16802

Abstract

The multivariate statistical techniques of canonical correlation and canonical redundancy analyses were used to assess the population structure of larvae of Sitona hispidulus (F.) in alfalfa field soil. A series of rhizosphere variables was correlated with a series of insect variables that represented the developmental stages of the insect to identify relationships between the insect and rhizosphere. Results indicated that 1st and 2nd-instar larvae were correlated with small root nodules and soil moisture, but not with taproot biomass. Third- and 4th-instar larvae and pupae were not correlated with any of the rhizosphere components measured. Fifth-instar larvae were associated with taproot biomass.

Résumé

On a utilisé les techniques multivariables de la corrélation canonique et de la redondance canonique afin d’étudier la structure des populations des larves de Sitona hispidulus (F.) dans le sol d’une luzemière. On a déterminé la corrélation entre un ensemble de variables de la rhizosphère et un ensemble de variables se rapportant au stade de développement de l’insecte, afin de mettre en lumière les relations entre la rhizosphère et l’insecte. Les résultats indiquent que les larves de 1er et 2ième stades sont corrélées aux nodules des racines et à l’humidité du sol, et non pas avec la biomasse des racines pivotantes. Les larves de 3ième et 4ième stades et les pupes ne sont corrélées avec aucune des composantes mesurées de la rhizosphère. Les larves de 5ième stade sont associées à la biomasse des racines pivotantes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeschlimann, J.P. 1980. The Sitona (Col.: Curculionidae) species occurring on Medicago and their natural enemies in the Mediterranean region. Entomophaga 25: 139153.CrossRefGoogle Scholar
Barkham, J.P., and Norris, J.M.. 1970. Multivariate procedures in an investigation of vegetation and soil relations of two beech woodlands, Cotswold Hills, England. Ecology 51: 630639.CrossRefGoogle Scholar
Bigger, J.H. 1930. Notes on the life history of the clover root curculio, Sitona hispidula Fab., in central Illinois. J. econ. Ent. 23: 334342.CrossRefGoogle Scholar
Brady, N.C. 1984. The nature and properties of soils. MacMillan Publishing Co., Inc., New York. 750 pp.Google Scholar
Byers, R.A., and Kendall, W.A.. 1982. Effects of plant genotypes and root nodulation on growth and survival of Sitona spp. larvae. Environ. Ent. 11: 440443.CrossRefGoogle Scholar
Cooley, W.W., and Lohnes, P.R.. 1971. Multivariate data analysis. John Wiley & Sons, New York. 363 pp.Google Scholar
Danthanarayana, W. 1967. Host specificity of Sitona beetle. Nature (London) 213: 11531154.CrossRefGoogle Scholar
Dart, P. 1977. Infection and development of leguminous nodules. pp. 367–472 in Hardy, R.W.F., and Silver, W.S. (Eds.), A Treatise on Dinitrogen Fixation. Section III: Biology. John Wiley & Sons, New York. 675 pp.Google Scholar
El-Dessouki, S.A., and Stein, W.. 1970. Intraspecific competition between larvae of Sitona spp. (Coleoptera: Curculionidae). Oecologia 6: 106108.CrossRefGoogle Scholar
El-Kifl, A., El-Dessouki, S.A., and El-Awady, S.. 1974. Effects of host plant and soil type on the life cycle of Sitona lividipes Fhs. Z. Pflanzenkr. Pflanzenschutz 12: 758764.Google Scholar
Elvin, M.K., and Yeargan, K.V.. 1985. Spatial distribution of clover root curculio, Sitona hispidulus (Fabricius) (Coleoptera: Curculionidae), eggs in relation to alfalfa crowns. J. Kan. ent. Soc. 58: 346348.Google Scholar
Garten, C.T. 1978. Multivariate perspectives on the ecology of plant mineral element composition. Am. Nat. 112: 533544.CrossRefGoogle Scholar
Gauch, H.G. 1982. Multivariate analysis in community ecology. Cambridge University Press, New York. 298 pp.CrossRefGoogle Scholar
Goldson, S.L., and French, R.A.. 1983. Age-related susceptibility of lucerne to sitona weevil, Sitona discoideus Gyllenhal (Coleoptera: Curculionidae), larvae and the associated patterns of adult infestation. N.Z.J. Agric. Res. 26: 251255.CrossRefGoogle Scholar
Jackson, D.J. 1920. Bionomics of weevils of the genus Sitones injurious to leguminous crops in Britain. Ann. appl. Biol. 7: 269298.CrossRefGoogle Scholar
Jackson, D.J. 1922. Bionomics of weevils of genus Sitona injurious to leguminous crops in Britain. Part II. Sitona hispidulus F., S. sulcifrons Thun, and S. crinita Herbst. Ann. appl. Biol. 9: 93115.CrossRefGoogle Scholar
Jewett, H.H. 1934. The clover root curculio. Ken. Agric. Exp. Stn. Circ. 42: 1323.Google Scholar
Johnson, R.A., and Wichern, D.W.. 1982. Applied multivariate statistical analysis. Prentice-Hall Inc., Englewood Cliffs, New Jersey.Google Scholar
Kowal, R.P., Lechowicz, M.J., and Adams, M.S.. 1976. The use of canonical analysis to compare response curves in physiological ecology. Flora: Morphologie, Geobotanik, Oekophysiologie 165: 2946.CrossRefGoogle Scholar
Lechowicz, M.J., and Shaver, G.R.. 1982. A multivariate approach to the analysis of factorial fertilization experiments in Alaskan arctic tundra. Ecology 63: 10291938.CrossRefGoogle Scholar
Leibee, G.L., Pass, B.C., and Yeargan, K.V.. 1980. Instar determination of clover root curculio, Sitona hispidulus (Coleoptera: Curculionidae). J. Kan. ent. Soc. 53: 473475.Google Scholar
Lingg, A.J., and Donaldson, M.D.. 1981. Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. J. invert. Path. 38: 191200.CrossRefGoogle Scholar
Manglitz, G.R., Anderson, D.M., and Gorz, H.J.. 1963. Observations on the larval feeding habits of two species of Sitona (Coleoptera: Curculionidae) in sweetclover fields. Ann. ent. Soc. Am. 56: 831835.CrossRefGoogle Scholar
Marrs, R.H. 1978. Seasonal changes and multivariate studies of the mineral element status of several members of the Ericaceae. J. Ecol. 66: 533545.CrossRefGoogle Scholar
Miles, D.B., and Ricklefs, R.E.. 1984. The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65: 16291640.CrossRefGoogle Scholar
Munns, D.N. 1977. Mineral nutrition and the legume symbiosis. pp. 363–391 in Hardy, R.W.F., and Gibson, A.H. (Eds.), A Treatise on Dinitrogen Fixation. Section IV: Agronomy and Ecology. John Wiley & Sons, New York. 527 pp.Google Scholar
Pesho, G.R. 1975. Clover root curculio: estimates of larval injury to alfalfa tap roots. J. econ. Ent. 68: 6165.CrossRefGoogle Scholar
Pielou, E.C. 1977. Mathematical Ecology. John Wiley & Sons, New York. 385 pp.Google Scholar
Robson, A.D. 1983. Mineral nutrition. pp. 36–55 in Broughton, W.J. (Ed.), Nitrogen Fixation, Volume 3. Legumes. Clarendon Press, Oxford. 333 pp.Google Scholar
Sarle, W.S. 1982. CANCORR. SAS User's Guide: Statistics. SAS Institute, Cory, North Carolina.Google Scholar
van den Wollenberg, A.L. 1977. Redundancy analysis an alternative for canonical correlation analysis. Psychometrika 42: 207219.CrossRefGoogle Scholar