Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T10:55:33.685Z Has data issue: false hasContentIssue false

A method for induction and quantification of diapause entry in the swede midge (Diptera: Cecidomyiidae)

Published online by Cambridge University Press:  22 November 2012

Lauren E. Des Marteaux*
Affiliation:
School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
Marc B. Habash
Affiliation:
School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
Jonathan M. Schmidt
Affiliation:
School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
Rebecca H. Hallett*
Affiliation:
School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
*
1Corresponding author (e-mail: ldesmart@gmail.com; rhallett@uoguelph.ca).
1Corresponding author (e-mail: ldesmart@gmail.com; rhallett@uoguelph.ca).

Abstract

Induction of diapause under laboratory conditions is a valuable tool for the study of dormancy in economic pests such as the swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae). In the present study, diapause in larval swede midge was achieved via manipulation of rearing photoperiod and temperature. Frequency of diapause was assessed by sieve separation of diapause cocoons from pre-sifted peat substrate following emergence of pupating individuals. Mean diapause frequency for swede midge larvae reared under cool conditions with short day length or cool conditions with decreasing day lengths were 45.2% and 19.5%, respectively. Only 1.2% of swede midge reared under warm, long day length conditions entered diapause. A small percentage of larvae neither pupated nor entered diapause and remained in substrate long after other individuals had emerged as adults. This behaviour was more prevalent under cool and short or decreasing day length rearing conditions. Approximately 76% of the larvae used for diapause induction were recovered with the present larval and cocoon retrieval method, and premature (larval and pupal) mortality averaged 18.2%. Although diapause occurred in the present study, conditions resulting in higher diapause frequencies should be investigated and attempts should be made to improve survival and recovery of individuals.

Résumé

L'induction de la diapause dans des conditions de laboratoire est un outil précieux pour l’étude de la dormance chez les insectes ravageurs d'importance économique, tels que la cécidomyie du chou-fleur, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae). Dans notre étude, des manipulations des photopériodes et des températures d’élevage ont provoqué la diapause chez les larves de la cécidomyie du chou-fleur. La récupération des cocons en diapause par tamisage du substrat de tourbe pré-tamisée, après l’émergence des individus qui ont complété la nymphose, a permis d'estimer la fréquence de la diapause. La fréquence moyenne de la diapause est de 45,2% chez les larves de la cécidomyie du chou-fleur élevées en conditions fraîches et en photophase courte et de 19,5% en conditions fraîches avec durée décroissante de la photophase. Seulement 1,2% des larves de la cécidomyie du chou-fleur élevées dans des conditions de jours longs et chauds entrent en diapause. Un petit pourcentage de larves n'entre ni en nymphose ni en diapause et demeure dans le substrat longtemps après que les autres individus aient émergé comme adultes. Ce comportement est plus fréquent sous des conditions d’élevage à température fraîche et à photophase courte ou décroissante. Nous avons retrouvé environ 76% des larves utilisées dans les expériences d'induction de la diapause avec notre méthode de récupération des larves et des cocons; la mortalité avant la maturité (des larves et des nymphes) est en moyenne de 18,2%. Bien que la diapause se soit produite durant notre étude, il reste nécessaire de rechercher des conditions menant à des fréquences plus élevées de diapause et d'essayer d'améliorer la survie et la récupération des individus.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, H.F. 1950. The identity of the swede midge, with notes on its biology. Annals of Applied Biology, 37: 241248.CrossRefGoogle Scholar
Bevan, W.J.Uncles, J.J. 1958. Studies on soil population of Contarinia pisi Winn. in 1957 in Yorkshire and Lancashire. Annals of Applied Biology, 46: 529535 . doi:10.1111/j.1744-7348.1958.tb02236.x.CrossRefGoogle Scholar
Bingxiang, L., Yonglin, C., Huiluo, C. 1998. Effects of photoperiod on embryonic diapause and reproduction in the migratory locust in three geographical populations. Insect Science, 5: 342349.Google Scholar
Biron, D., Langlet, X., Boivin, G., Brunel, E. 1998. Expression of early and late-emerging phenotypes in both diapausing and non-diapausing Delia radicum L. pupae. Entomologia Experimentalis et Applicata, 87: 119124.CrossRefGoogle Scholar
Canadian Food Inspection Agency. 2009. Review of the pest status of the swede midge (Contarinia nasturtii) in Canada. RMD-08-03 [online]. Available from http://www.inspection.gc.ca/english/plaveg/protect/rmd/rmd-08-03e.shtml [accessed 17 October 2011].Google Scholar
Chen, M.Shelton, A.M. 2007. Impact of soil type, moisture, and depth on swede midge (Diptera: Cecidomyiidae) pupation and emergence. Environmental Entomology, 36: 13491355.CrossRefGoogle ScholarPubMed
Chen, M., Shelton, A.M., Wang, P., Hoepting, C.A., Kain, W.C., Brainard, D.C. 2009. Occurrence of the new invasive insect Contarinia nasturtii (Diptera: Cecidomyiidae) on cruciferous weeds. Journal of Economic Entomology, 102: 115120.CrossRefGoogle ScholarPubMed
Danks, H.V. 1987. Insect dormancy: an ecological perspective. Biological Survey of Canada, Ottawa, Canada.Google Scholar
Denlinger, D.L. 1972. Induction and termination of pupal diapause in Sarcophaga (Diptera: Sarcophagidae). Biological Bulletin, 142: 1124.CrossRefGoogle Scholar
Denlinger, D.L. 2002. Regulation of diapause. Annual Review of Entomology, 47: 93122.CrossRefGoogle ScholarPubMed
De Wilde, J., Duintjer, C.S., Mook, L. 1959. Physiology of diapause in the adult Colorado beetle (Leptinotarsa decemlineata Say). I. The photoperiod as a controlling factor. Journal of Insect Physiology, 3: 7585.CrossRefGoogle Scholar
Dingle, H., Brown, C.K., Hegmann, J.P. 1977. The nature of genetic variance influencing photoperiodic diapause in a migrant insect, Oncopeltus fasciatus. The American Naturalist, 111: 10471059.CrossRefGoogle Scholar
Dry, F.W. 1915. An attempt to measure the local and seasonal abundance of the swede midge in parts of Yorkshire over the years 1912 to 1914. Annals of Applied Biology, 2: 81108 . doi:10.1111/j.1744-7348.1915.tb05427.x.CrossRefGoogle Scholar
Emerson, K.J., Bradshaw, W.E., Holzapfel, C.M. 2009. Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends in Genetics, 25: 217225.CrossRefGoogle ScholarPubMed
Fournet, S., Astier, N., Cortesero, A.M., Biron, D.G. 2004. Influence of a bimodal emergence strategy of a dipteran host on life-history traits of its main parasitoids. Ecological Entomology, 29: 685691.CrossRefGoogle Scholar
Golightly, W.H. 1952. Soil sampling for wheat-blossom midges. Annals of Applied Biology, 39: 379384 . doi:10.1111/j.1744-7348.1952.tb01021.x.CrossRefGoogle Scholar
Hallett, R.H., Goodfellow, S.A., Heal, J.D. 2007. Monitoring and detection of the swede midge (Diptera: Cecidomyiidae). The Canadian Entomologist, 139: 700712.CrossRefGoogle Scholar
Hallett, R.H., Goodfellow, S.A., Weiss, R.M., Olfert, O. 2009. MidgEmerge, a new predictive tool, indicates the presence of multiple emergence phenotypes of the overwintered generation of swede midge. Entomologia Experimentalis et Applicata, 130: 8197.CrossRefGoogle Scholar
Hallett, R.H.Heal, J.D. 2001. First Nearctic record of the swede midge (Diptera: Cecidomyiidae), a pest of cruciferous crops from Europe. The Canadian Entomologist, 133: 713715.CrossRefGoogle Scholar
Han, B.Denlinger, D.L. 2009. Mendelian inheritance of pupal diapause in the flesh fly, Sarcophaga bullata. Journal of Heredity, 100: 251255 . doi:10.1093/jhered/esn082.CrossRefGoogle ScholarPubMed
Kikkert, J.R., Hoepting, C.A., Wu, Q.-J., Wang, P., Baur, R., Shelton, A.M. 2006. Detection of Contarinia nasturtii (Diptera: Cecidomyiidae) in New York, a new pest of cruciferous plants in the United States. Journal of Economic Entomology, 99: 13101315.CrossRefGoogle ScholarPubMed
Mansingh, A.Smallman, B.N. 1966. Photoperiod control of an “obligatory” pupal diapause. The Canadian Entomologist, 98: 613616 . doi:10.4039/Ent98613-6.CrossRefGoogle Scholar
Masaki, S. 2002. Ecophysiological consequences of variability in diapause intensity. European Journal of Entomology, 99: 143154.CrossRefGoogle Scholar
Readshaw, J.L. 1961. The biology and ecology of the swede midge, Contarinia nasturtii (Kieffer) (Diptera: Cecidomyidae). Ph.D. thesis. University of Durham, Durham, United Kingdom.Google Scholar
Readshaw, J.L. 1966. The ecology of the swede midge, Contarinia nasturtii (Kieff.) (Diptera, Cecidomyiidae). I. Life-history and influence of temperature and moisture on development. Bulletin of Entomological Research, 56: 685700.CrossRefGoogle Scholar
Readshaw, J.L. 1968. Damage to swedes by the swede midge, Contarinia nasturtii (Kieff.), and a possible method of cultural control. Bulletin of Entomological Research, 58: 2529.CrossRefGoogle Scholar
Rogerson, J.P. 1963. Swede midge on two Northumberland farms, 1959–61. Plant Pathology, 12: 161171.CrossRefGoogle Scholar
Tauber, M.J.Tauber, C.A. 1970. Photoperiodic induction and termination of diapause in an insect: response to changing day lengths. Science, 167 (3915): 170 . doi:10.1126/science.167.3915.170.CrossRefGoogle Scholar