Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-08T14:51:48.007Z Has data issue: false hasContentIssue false

INFLUENCE OF FOLIAR NITROGEN LEVELS ON SURVIVAL, DEVELOPMENT, AND REPRODUCTION OF WESTERN SPRUCE BUDWORM, CHORISTONEURA OCCIDENTALS (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

J. Wayne Brewer
Affiliation:
Department of Entomology, Colorado State University, Fort Collins, Colorado 80523
John L. Capinera
Affiliation:
Department of Entomology, Colorado State University, Fort Collins, Colorado 80523
Robert E. Deshon Jr.
Affiliation:
Department of Entomology, Colorado State University, Fort Collins, Colorado 80523
Mary L. Walmsley
Affiliation:
Department of Entomology, Colorado State University, Fort Collins, Colorado 80523

Abstract

The influence of nitrogen levels in foliage of white-fir, Abies concolor, and Douglas-fir, Pseudotsuga menziesii, seedlings on various biological characteristics of the western spruce budworm, Choristoneura occidentalis Freeman, was studied. Seedlings were grown under greenhouse conditions and provided with nutrient solutions to maintain five foliar nitrogen levels ranging from 1.29 to 4.42% dry weight for white fir and 1.43 to 3.94% for Douglas fir. Larvae confined to treated seedlings were monitored through the next generation. Larval mortality was higher, and development time longer, at both upper and lower extremes of foliar nitrogen than at mid-level. Mean pupal weight was significantly greater for larvae reared on white fir with the mid-range foliar-nitrogen level. Mean number, and weight, of eggs laid were highest when larvae fed on foliage from the mid-range nitrogen level. Total number of larvae produced was lowest at the high and low extremes of foliar nitrogen levels.

Résumé

On a étudié l'influence de la teneur en azote du feuillage de plantules de l'Abies concolor et du Pseudotsuga menziesii sur divers paramètres biologiques de la tordeuse occidentale de l'épinette, Choristoneura occidentalis Freeman. Les plantules étaient gardées en serre et nourries de solutions permettant de maintenir la teneur en azote du feuillage à cinq niveaux variant de 1.29 à 4.42% pour l'A. concolor, et de 1.43 à 3.94% pour le P. menziesii. Des larves confinées à du feuillage provenant de ces traitements ont été suivies jusqu'à la prochaine génération. La mortalité larvaire s'est avérée plus élevée et la durée du développement plus longue, aux concentrations extrêmes qu'aux concentrations intermédiaires. Le poids pupal moyen était significativement plus élevé chez les larves élevées sur l'A. concolor à la concentration médiane d'azote. Le nombre et le poids moyens des oeufs pondus ont atteint leur maximum lorsque les larves se sont nourries du feuillage dont la teneur en azote était médiane. Le nombre total minimum de larves a été obtenu aux teneurs extrêmes en azote.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, T. L., Onken, A. B., Matheson, R. L., and Bynum, E. D. Jr., 1982. Nitrogen fertilizer influence on greenbug (Homoptera: Aphididae) dynamics and damage to sorghum. J. econ. Ent. 75: 695698.CrossRefGoogle Scholar
Bakke, A. 1969. The effect of forest fertilization on the larval weight and larval density of Saspeyresia strobilella (L.) (Lepidoptera: Tortricidae) in cones of Norway spruce. Z. angew. Ent. 63: 451453.CrossRefGoogle Scholar
Calow, P. 1979. The cost of reproduction — a physiological approach. Biol. Rev. 54: 2340.CrossRefGoogle ScholarPubMed
Cates, R. G., Redak, R. A., and Henderson, C. B.. 1983. Patterns in defensive natural product chemistry: Douglas-fir and western spruce budworm interactions. In Hedin, P. A. (Ed.), Plant Resistance to Insects. Am. chem. Soc. Symp. 208. American Chemical Society, Washington, DC.Google Scholar
Dethier, V. G. 1954. Evolution of feeding preferences in phytophagous insects. Evolution 8: 3354.CrossRefGoogle Scholar
Ehrlich, P. R. and Raven, P. H.. 1964. Butterflies and plants: A study in coevolution. Evolution 18: 586608.CrossRefGoogle Scholar
Feeny, P. P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565581.CrossRefGoogle Scholar
Fellin, D. G. and Dewey, J. E.. 1982. Western spruce budworm. U.S. Dep. Agric. For. Serv. Forest Insect and Disease Leafl. 53.Google Scholar
Fraenkel, G. 1959. The raison d'être of secondary plant substances. Science 129: 14661470.CrossRefGoogle ScholarPubMed
Furniss, R. L. and Carolin, V. M.. 1977. Western Forest Insects. U.S. Dep. Agric. For. Serv. Misc. Publ. 1339.Google Scholar
Harvey, G. T. 1983. Environmental and genetic effects on mean egg weight in spruce budworm (Lepidoptera: Tortricidae). Can. Ent. 115: 11091117.CrossRefGoogle Scholar
Jackson, P. R. and Hunter, P. E.. 1983. Effects of nitrogen fertilization level on development and populations of the pecan leaf scorch mite (Acari: Tetranychidae). J. econ. Ent. 76: 432435.CrossRefGoogle Scholar
Mattson, W. J. Jr. 1980. Herbivory in relation to plant nitrogen content. A. Rev. Ecol. Syst. 11: 119161.CrossRefGoogle Scholar
Mattson, W. J. Jr. 1983. Spruce budworm (Choristoneura fumiferana) performance in relation to foliar chemistry of its host plants. Proceedings Forest defoliator — host interactions: a comparison between gypsy moth and spruce budworms. U.S. Dep. Agric. For. Serv. Tech. Rep. NE-85.Google Scholar
Mattson, W. J. Jr., and Koller, C. N.. Spruce budworm performance in relation to matching selected chemical traits of its host. In Proc. IUFRO Symp. The role of the insect/plant relationship in the population dynamics of forest pests. Irkutsk, USSR, Aug. 24–28. In press.Google Scholar
McKenzie, H. A. and Wallace, H. S.. 1954. The Kjeldahl determination of nitrogen: A critical study of digestion conditions, temperature, catalyst and oxidizing agent. Austr. J. Chem. 7: 5570.CrossRefGoogle Scholar
Moran, N. and Hamilton, W. D.. 1980. Low nutritive quality as defense against herbivores. J. theor. Biol. 86: 247254.CrossRefGoogle Scholar
Morrow, P. A. and Fox, L. R.. 1980. Effects of variation in Eucalyptus essential oil yield on insect growth and grazing damage. Oecologia 45: 209219.CrossRefGoogle ScholarPubMed
Myers, J. H. and Post, B. J.. 1981. Plant nitrogen and fluctuations of insect populations: A test with the cinnabar moth – tansy ragwort system. Oecologia 48: 151156.CrossRefGoogle ScholarPubMed
Nickel, J. L. 1973. Pest situation in changing agricultural systems — a review. Bull. ent. Soc. Am. 19: 136142.Google Scholar
Phillipson, J. 1981. Bioenergetic Option and Phylogeny. In Townsend, C. R. and Calow, P. (Eds.), Physiology Ecology: An Evolutionary Approach to Resource Use. Sinauer Associates, Sunderland, MA.Google Scholar
Prestidge, R. A. 1982. Instar duration, adult consumption, oviposition and nitrogen utilization efficiencies of leafhoppers feeding on different quality food (Auchenorrhyncha: Homoptera). Ecol. Ent. 7: 91101.CrossRefGoogle Scholar
Redak, R. A. and Cates, R. G.. 1984. Douglas fir – Spruce budworm interactions: The effect of nutrition, chemical defenses, tissue phenology, and tree physical parameters on budworm success. Oecologia 62: 6167.CrossRefGoogle ScholarPubMed
Robertson, J. L. 1979. Rearing the western spruce budworm. CANUSA. For. Serv. USDA, Washington, DC. 18 pp.Google Scholar
Scriber, J. M. 1978. The effects of larval feeding specialization and plant growth form on the consumption and utilization of plant biomass and nitrogen: an ecological consideration. Entomologia exp. appl. 24: 694710.CrossRefGoogle Scholar
Scriber, J. M. 1979. Post-ingestive utilization of plant biomass and nitrogen by Lepidoptera: Legume feeding by the southern armyworm. Jl N.Y. ent. Soc. 87: 141153.Google Scholar
Slansky, F. and Feeny, P. P.. 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 47: 209228.CrossRefGoogle Scholar
Smirnoff, W. A. and Bernier, B.. 1973. Increased mortality of the Swaine jack-pine sawfly, and foliar nitrogen concentrations after urea fertilization. Can. J. For. Res. 3: 112121.CrossRefGoogle Scholar
Smirnoff, W. A. and Valero, J.. 1975. Effets à moyen terme de la fertilisation par uree ou par potassium sur Pinus banksiana L. et le comportement de ses insectes devastateurs: tel que Neodiprion swainei (Hymenoptera, Tenthredinidae) et Toumeyella numismaticum (Homoptera, Coccidae). Can. J. For. Res. 5: 236244.CrossRefGoogle Scholar
Smith, J. N. M. 1981. Does high fecundity reduce survival in song sparrows? Evolution 35: 11421148.CrossRefGoogle ScholarPubMed
Stark, R. W. 1965. Recent trends in forest entomology. A. Rev. Ent. 10: 303324.CrossRefGoogle Scholar
Thornhill, R. and Alcock, J.. 1983. The Evolution of Insect Mating Systems. Harvard Univ. Press, Cambridge, MA.CrossRefGoogle Scholar
Wagner, M. R. and Blake, E. A.. 1983. Western spruce budworm consumption — effects of host species and foliage chemistry. Proceedings forest defoliator — interactions: A comparison between gypsy moth and spruce budworms. U.S. Dep. Agric. For. Serv. Tech. Rep. NE-85.Google Scholar
White, T. C. R. 1974. A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations of Selidosema suavis in a plantation of Pinus radiata in New Zealand. Oecologia 16: 279301.CrossRefGoogle Scholar
White, T. C. R. 1976. Weather, food and plagues of locusts. Oecologia 22: 119134.CrossRefGoogle ScholarPubMed
White, T. C. R. 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33: 7186.CrossRefGoogle ScholarPubMed
Whittaker, R. H. and Feeny, P. P.. 1971. Allelochemics: chemical interactions between species. Science 171: 757770.CrossRefGoogle ScholarPubMed
Willmer, P. G. and Unwin, D. M.. 1981. Field analysis of insect heat budgets: reflectance, size and heating rates. Oecologia 50: 250255.CrossRefGoogle Scholar