Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-25T05:57:27.616Z Has data issue: false hasContentIssue false

INDUCTION OF PROLONGED DIAPAUSE IN BARBARA COLFAXIANA (LEPIDOPTERA: OLETHREUTIDAE): CORRELATIONS WITH CONE CROPS AND WEATHER

Published online by Cambridge University Press:  31 May 2012

A. F. Hedlin
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia V8Z 1M5
G. E. Miller
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia V8Z 1M5
D. S. Ruth
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia V8Z 1M5

Abstract

Studies were carried out in the field and in the laboratory to determine if prolonged diapause of the Douglas-fir cone moth, Barbara coifaxiana (Kearfott), was correlated with the sizes of the cone crops maturing in the year of larval feeding (N) and in the year following larval feeding (N + 1), and to determine if weather during the period of larval feeding (year N) influenced the size of the maturing cone crop or the incidence of prolonged diapause the following year (N + 1). Field studies showed that prolonged diapause induction in B. coifaxiana was not rank correlated (but approached significance) with the size of the cone crop maturing in year N, but was negatively rank correlated with that in year N + 1. Two of seven weather parameters, mean maximum temperature and mean daily temperature, measured during the larval feeding period were positively rank correlated with cone crop size. No parameter was correlated with the incidence of prolonged diapause. In the laboratory, the incidence of prolonged diapause was negatively correlated with temperature. Photoperiod and parental diapause habit had no direct effect.

Résumé

Des études ont été effectuées en plein champ et au laboratoire, à l'effet de déterminer si l'incidence de la diapause prolongée chez le perce-cône du Douglas, Barbara coifaxiana (Kft.) était en corrélation avec l'importance de la récolte de cônes en voie de maturation dans l'année (N) où les larves s'alimentent et dans l'année suivante (N + 1), et si les paramètres du temps survenant au cours de la période d'alimentation des larves (année N) influaient sur l'importance de la récolte de cônes en voie de maturation ou bien sur l'incidence de la diapause prolongée l'année suivante (N + 1). Les études en plain champ ont montré que l'induction de la diapause prolongée chez B. coifaxiana n'était pas en corrélation des rangs (mais s'approchait d'une différence significative) avec l'importance de la récolte de cônes en voie de maturation de l'année N, mais était en corrélation des rangs négative avec celle de l'année N + 1. Deux des sept paramètres du temps, la température maximum moyenne et la température quotidienne moyenne, mesurés durant la période d'alimentation des larves étaient en corrélation des rangs positive avec l'importance de la récolte de cônes. Aucun paramètre n'était en corrélation avec l'incidence d'une diapause prolongée. Au laboratoire, l'incidence de la diapause prolongée était en corrélation négative avec la température; la photopériode et la parentage étaient sans effet.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, L. P. and Kraft, K. J.. 1965. A population study of the cone moth Laspeyresia toreuta Grote in Pinus banksiana stands. Ecology 46: 561563.CrossRefGoogle Scholar
Allen, G. S. and Owens, J. N.. 1972. The Life History of Douglas-fir. Environment Canada, Forestry Service, Ottawa. 139 pp.Google Scholar
Bakke, A. 1963. Studies on the spruce-cone insects Laspeyresia strobilella (L.) (Lepidoptera: Tortricidae), Kaltenbachiola strobi (Winn.) (Diptera: Itonididae) and their parasites (Hymenoptera) in Norway. Rep. Norweg. For. Res. Inst. 67. 151 pp.Google Scholar
Bakke, A. 1971. Distribution of prolonged diapausing larvae in populations of Laspeyresia strobilella L. (Lep., Tortricidae) from spruce cones. Norsk. ent. Tidsskr. 18: 8993.Google Scholar
Bedard, W. D. 1966. High temperature mortality of the sugar-pine cone beetle, Conophthorus lambertianae Hopkins (Coleoptera: Scolytidae). Can. Ent. 98: 152157.CrossRefGoogle Scholar
Chippendale, G. M. 1977. Hormonal regulation of larval diapause. A. Rev. Ent. 22: 121138.CrossRefGoogle Scholar
Clark, E. C., Schenk, J. A., and Williamson, D. L.. 1963. The cone-infesting moth Barbara colfaxiana as a pest of Douglas-fir in northern Idaho. Ann. ent. Soc. Am. 56: 246250.CrossRefGoogle Scholar
Coulson, R. N. and Franklin, R. T.. 1970. Microenvironment measurements for the Dioryctria amatella-zimmermani complex in shortleaf pine. 1. Insect introduction, temperature, humidity and vapor pressure. J. econ. Ent. 63: 558564.CrossRefGoogle Scholar
Dobbs, R. D., Edwards, D. G. W., Konishi, J., and Wallinger, D.. 1976. Guideline to collecting cones of B.C. conifers. B.C. For. Serv./Can. For. Serv. (Victoria) Joint Rep. 3. 98 pp.Google Scholar
Ebell, L. F. 1967. Cone production induced by drought in potted Douglas-fir. Can. Dep. Agric., For. Br., Bi-mon. Res. Notes 23: 2627.Google Scholar
Ebell, L. F. 1971. Girdling: its effect on carbohydrate status and on reproductive bud and cone development of Douglas-fir. Can. J. Bot. 49: 453466.CrossRefGoogle Scholar
Ebell, L. F. and McMullan, E. E.. 1970. Nitrogenous substances associated with differential cone production responses of Douglas-fir to ammonium and nitrate fertilization. Can. J. Bot. 48: 21692177.CrossRefGoogle Scholar
Eis, S. 1973. Cone production in Douglas-fir and grand fir and its climatic requirements. Can. J. For. Res. 3: 6170.CrossRefGoogle Scholar
Eis, S., Garman, E. H., and Ebell, L.. 1965. Relation between cone production and diameter increment of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and grand fir (Abies grandis (Dougl.) Lindl.), and western white pine (Pinus monticola Dougl.). Can. J. Bot. 43: 15531559.CrossRefGoogle Scholar
Forcella, F. 1980. Cone predation by pinyon cone beetle (Conophthorus edulis; Scolytidae): Dependence on frequency and magnitude of cone production. Am. Nat. 116: 594598.CrossRefGoogle Scholar
Hedlin, A. F. 1960 a. On the life history of the Douglas-fir cone moth, Barbara colfaxiana (Kft.) (Lepidoptera: Olethreutidae ) and one of its parasites Glypta evetriae Cush. (Hymenoptera: Ichneumonidae). Can. Ent. 92: 826834.CrossRefGoogle Scholar
Hedlin, A. F. 1960 b. Diapause in Douglas-fir cone moth, Barbara colfaxiana (Kft.). Can. Dep. Agric., Div. For. Biol., Bi-mon. Prog. Rep. 16(6): 4.Google Scholar
Hedlin, A. F. 1964. Results of a six-year plot study on Douglas-fir cone insect population fluctuations. For. Sci. 10: 124128.Google Scholar
Johnson, N. E. and Heldin, A. F.. 1967. Douglas-fir cone and seed insects and their control. Can. Dep. Agric., For. Br., Dep. Publ. 1168. 11 pp.Google Scholar
Keen, F. P. 1958. Cone and seed insects of western forest trees. Tech. Bull. U.S. Dep. Agric. 1169. 168 pp.Google Scholar
Lowry, W. P. 1966. Apparent meteorological requirements for abundant cone crop in Douglas-fir. For. Sci. 12: 185192.Google Scholar
Mattson, W. J. 1971. Relationship between cone crop size and cone damage by insects in red pine seed-production areas. Can. Ent. 103: 617621.CrossRefGoogle Scholar
Mattson, W. J. 1980. Cone resources and the ecology of the red pine cone beetle, Conophthorus resinosae (Coleoptera: Scolytidae). Ann. ent. Soc. Am. 73: 390396.CrossRefGoogle Scholar
Odera, J. A. 1971. The effect of solar radiation on cone insects of eastern white pine (Pinus strobus) in the Fredericton area, New Brunswick. Can. Ent. 103: 605609.CrossRefGoogle Scholar
Owens, J. N. 1969. The relative importance of initiation and early development on cone production in Douglas-fir. Can. J. Bot. 47: 10391049.CrossRefGoogle Scholar
Pharis, R. P. 1975. Promotion of flowering in conifers by gibberellins. For. Chron. 51: 244248.CrossRefGoogle Scholar
Powell, J. A. 1974. Occurrence of prolonged diapause in ethmiid moths. Pan-Pacific Ent. 50: 220225.Google Scholar
Puritch, G. S., McMullan, E. E., Meagher, M. D., and Simmons, C. S.. 1979. Hormonal enhancement of cone production in Douglas-fir grafts and seedlings. Can. J. For. Res. 9: 193200.CrossRefGoogle Scholar
Radcliffe, D. N. 1952. An appraisal of seed damage by the Douglas fir cone moth. For. Chron. 28: 1924.CrossRefGoogle Scholar
Rook, D. A. and Sweet, G. B.. 1971. Photosynthesis and photosynthate distribution in Douglas-fir strobili grafted to young seedlings. Can. J. Bot. 49: 1317.CrossRefGoogle Scholar
Ross, S. D. 1976. Differential flowering responses by young Douglas-fir grafts and equi-sized seedlings to gibberellins and auxin. Acta Hortic. 56: 163168.CrossRefGoogle Scholar
Ross, S. D. and Pharis, R. P.. 1976. Promotion of flowering in the Pinaceae by gibberellins. I. Sexually mature non-flowering grafts of Douglas-fir. Physiol. Plant. 36: 182186.CrossRefGoogle Scholar
Ruth, D. S. and Hedlin, A. F.. 1969. Rearing Douglas-fir cone moth, Barbara colfaxiana (Kearfott), on an artificial diet in the laboratory. J. ent. Soc. Br. Columb. 66: 2225.Google Scholar
Snedecor, G. W. and Cochran, W. G.. 1967. Statistical Methods, 6th ed. Iowa State Univ. Press, Ames. 593 ppGoogle Scholar
Sullivan, C. R. and Wallace, D. R.. 1967. Interaction of temperature and photoperiod in the induction of prolonged diapause in Neodiprion sertifier. Can. Ent. 99: 834850.CrossRefGoogle Scholar