Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-26T06:18:23.794Z Has data issue: false hasContentIssue false

Fluorescent powder marking reduces condition but not survivorship in adult mountain pine beetles

Published online by Cambridge University Press:  02 April 2012

Tyler G. Reid
Affiliation:
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
Mary L. Reid*
Affiliation:
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
*
1Corresponding author (e-mail: mreid@ucalgary.ca).

Abstract

We investigated the impact of different fluorescent marking powders on both survivorship and daily body condition, measured as mass/volume ratio, using adult mountain pine beetles, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), in a laboratory study. Initial condition of the marked beetle groups did not differ from that of an unmarked group. However, beetles in better initial condition survived longer, thus validating our condition index. The condition but not the survivorship of mountain pine beetles was affected by the marking treatment. Overall, the condition of beetles declined over time. The condition of marked beetles decreased at a higher rate than that of unmarked beetles while alive but at a lower rate after death. This pattern of decreasing condition suggests that marked beetles lost water faster than unmarked beetles while alive, so unmarked beetles had more water to lose after death. Because reduced condition may affect optimal dispersal behaviour, we suggest that these effects be routinely examined and minimized in mark-recapture studies.

Résumé

Nous avons étudié l’impact de poudres fluorescentes de marquage sur la survie et sur la condition journalière, mesurée par le rapport masse/volume (mg/mm3), dans une étude en laboratoire de dendroctones du pin ponderosa, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae). La condition initiale des coléoptères est semblable dans les groupes marqués et non marqués. Cependant, les coléoptères en meilleure condition initiale survivent plus longtemps, ce qui confirme la validité de notre indice de condition. Le marquage affecte la condition, mais non la survie, des dendroctones du pin ponderosa. Globalement, la condition des coléoptères diminue avec le temps. La condition des coléoptères marqués décline plus rapidement que celle des coléoptères non marqués durant leur vie; après la mort, leur taux de déclin est plus lent. Ce patron de déclin de la condition laisse croire que les coléoptères marqués perdent de l’eau plus rapidement que les non marqués durant leur vie, si bien qu’après la mort, les coléoptères non marqués ont plus d’eau à perdre. Parce qu’une condition inférieure peut affecter le comportement optimal de dispersion, nous suggérons d’examiner systématiquement ces effets et de les minimiser dans les études de marquage et de recapture.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, M.D. 1969. Lipid loss with flight in the Douglas-fir beetle. The Canadian Entomologist, 101: 164165.CrossRefGoogle Scholar
Bowler, D.E., and Benton, T.G. 2005. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biological Reviews of the Cambridge Philosophical Society, 80: 205225.CrossRefGoogle ScholarPubMed
Byers, J.A., and Lofqvist, J. 1989. Flight initiation and survival in the bark beetle Ips typographus (Coleoptera: Scolytidae) during the spring dispersal. Holarctic Ecology, 12: 432440.Google Scholar
Cook, S.P., and Hain, F.P. 1992. The influence of self-marking with fluorescent powders on adult bark beetles (Coleoptera: Scolytidae). Journal of Entomological Science, 27: 269279.CrossRefGoogle Scholar
Corbett, A., and Rosenheim, J.A. 1996. Quantifying movement of a minute parasitoid, Anagrus epos (Hymenoptera: Mymaridae), using fluorescent dust marking and recapture. Biological Control, 6: 3544.CrossRefGoogle Scholar
Coviella, C.E., Garcia, J.F., Jeske, D.R., Redak, R.A., and Luck, R.F. 2006. Feasibility of tracking within-field movements of Homalodisca coagulata (Hemiptera: Cicadellidae) and estimating its densities using fluorescent dusts in mark– release–recapture experiments. Journal of Economic Entomology, 99: 10511057.CrossRefGoogle ScholarPubMed
Crumpacker, D.W. 1974. The use of micronized fluorescent dusts to mark adult Drosophila pseudoobscura. American Midland Naturalist, 91: 118129.CrossRefGoogle Scholar
Elkin, C.M., and Reid, M.L. 2005. Low energy reserves and energy allocation decisions affect reproduction by mountain pine beetles, Dendroctonus ponderosae. Functional Ecology, 19: 102109.CrossRefGoogle Scholar
Haglar, J.R., and Jackson, C.G. 2001. Methods for marking insects: current techniques and future prospects. Annual Review of Entomology, 46: 511543.CrossRefGoogle Scholar
Jakob, E.M., Marshall, S.D., and Uetz, G.W. 1996. Estimating fitness: a comparison of body condition indices. Oikos, 77: 6167.CrossRefGoogle Scholar
Lamb, M.J. 1984. Age related changes in the rate of water loss and survival time in dry air of active Drosophila melanogaster. Journal of Insect Physiology, 30: 967973.CrossRefGoogle Scholar
Lehmann, F., Dickinson, M.H., and Staunton, J. 2000. The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.). The Journal of Experimental Biology, 203: 16131624.CrossRefGoogle ScholarPubMed
Linton, D.A., Safranyik, L., McMullen, L.H., and Betts, R. 1987. Field techniques for rearing and marking mountain pine beetle for use in dispersal studies. Journal of the Entomological Society of British Columbia, 84: 5357.Google Scholar
McMullen, L.H., Safranyik, L., Linton, D.A., and Betts, R. 1988. Survival of self-marked mountain pine beetles emerged from logs dusted with fluorescent powder. Journal of the Entomological Society of British Columbia, 85: 2528.Google Scholar
Messing, R.H., Klungness, M., Purcell, M., and Wong, T.T.Y. 1993. Quality control parameters of mass-reared opiine parasitoids used in augmentative biological control of tephrid fruit flies in Hawaii. Biological Control, 3: 140147.CrossRefGoogle Scholar
Meyerdirk, D.E., Hart, W.G., and Burnside, J. 1979. Marking and dispersal study of adults of the citrus blackfly, Aleurocanthus woglumi. Southwestern Entomology, 4: 325329.Google Scholar
Naranjo, S.E. 1990. Influence of two mass-marking techniques on survival and flight behavior of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 83: 13601364.CrossRefGoogle Scholar
Narisu, J., Lockwood, A., and Schell, S.P. 1999. A novel mark–recapture technique and its application to monitoring the direction and distance of local movements of rangeland grasshoppers (Orthoptera: Acridae) in the context of pest management. Journal of Applied Ecology, 36: 115.CrossRefGoogle Scholar
Oswalt, D.A., Appel, A.G., and Smith, L.M. II. 1997. Water loss and desiccation tolerance of german cockroaches (Dictyoptera: Blattellidae) exposed to moving air. Comparative Biochemistry and Physiology, 117A: 477486.CrossRefGoogle Scholar
Poland, T.M., Haack, R.A., and Petrice, T.R. 2000. Dispersal of Tomicus piniperda (Coleoptera: Scolytidae) from operational and simulated mill yards. The Canadian Entomologist, 132: 853866.CrossRefGoogle Scholar
Reinhold, K. 1999. Energetically costly behavior and the evolution of resting metabolic rate in insects. Functional Ecology, 13: 217224.CrossRefGoogle Scholar
Rhodes, D.J., Hayes, J.L., and Steiner, C. 1998. Retention of external and internal markers by southern pine beetles (Coleoptera: Scolytidae) during gallery construction. Journal of Entomological Science, 33: 221232.CrossRefGoogle Scholar
Rienecke, J.P. 1990. A rapid and controllable technique for surface labelling boll weevils with fluorescent pigments. Southwestern Entomology, 15: 309316.Google Scholar
Roff, D. 1977. Dispersal in dipterans: its costs and consequences. The Journal of Animal Ecology, 46: 443456.CrossRefGoogle Scholar
Safranyik, L., and Carroll, A. 2006. The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. The mountain pine beetle: a synthesis of its biology and management in lodgepole pine. Natural Resources Canada, Canadian Forest Service, Victoria, British Columbia.Google Scholar
Safranyik, L., Silversides, R., McMullen, L.H., and Linton, D.A. 1989. An empirical approach to modeling the local dispersal of the mountain pine beetle (Dendroctonus ponderosae Hopk.) (Col., Scolytidae) in relation to sources of attraction, wind direction and speed. Journal of Applied Entomology, 108: 498511.CrossRefGoogle Scholar
Safranyik, L., Linton, D.A., Silversides, R., and McMullen, L.H. 1992. Dispersal of released mountain pine beetles under the canopy of a mature lodgepole pine stand. Journal of Applied Entomology, 113: 441450.CrossRefGoogle Scholar
Salom, S.M., and McLean, J.A. 1990. Dispersal of Trypodendron lineatum (Olivier) within a valley setting. The Canadian Entomologist, 122: 4358.CrossRefGoogle Scholar
SAS Institute Inc. 2007. JMP version 7.0 [computer program]. SAS Institute Inc., Cary, North Carolina.Google Scholar
Schmitz, R.F. 1980. Dispersal of pine engraver beetles in second growth ponderosa pine forests. In Dispersal of forest insects: evaluation, theory and management implications. Edited by Berryman, A.A. and Safranyik, L.. Washington State University. pp. 4150.Google Scholar
Southwood, T.R.E., and Henderson, P.A. 2000. Ecological methods. Blackwell Science Ltd., Oxford, United Kingdom.Google Scholar
Stamps, J.A., Krishnan, V.V., and Reid, M.L. 2005. Search costs and habitat selection by dispersers. Ecology, 86: 510518.CrossRefGoogle Scholar
Wagner, T.L., Gagne, J.A., Sharpe, P.J.H., and Coulson, R.N. 1984. Effects of constant temperature on longevity of adult southern pine beetles (Coleoptera: Scolytidae). Environmental Entomology, 13: 11251130.CrossRefGoogle Scholar
Watson, J.A. 1971. Survival and fecundity of Dendroctonus ponderosae (Coleoptera: Scolytidae) after laboratory storage. The Canadian Entomologist, 103: 13811385.CrossRefGoogle Scholar