Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T04:13:50.661Z Has data issue: false hasContentIssue false

FEEDING BEHAVIOUR OF THE FIRST-INSTAR CHORISTONEURA FUMIFERANA AND CHORISTONEURA PINUS PINUS (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

A. Retnakaran
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada P6A 5M7
W.L. Tomkins
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada P6A 5M7
M.J. Primavera
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada P6A 5M7
S.R. Palli
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

We have discovered that, contrary to the long-held belief, 1st-instar spruce budworm, Choristoneura fumiferana Clemens, do feed. They display red alimentary tracts if they are provided with diet containing the red dye amaranth. They graze on the surface of balsam fir needles sprayed with rhodamine and ingest the fluorescent material, which can be detected in the frass pellets deposited inside the hibernacula. When emerging 1st instars were allowed to crawl on the inside surface of a glass tube coated with the polyhedral inclusion bodies of a recombinant C. fumiferana virus containing the gene for the green fluorescent protein, the larvae showed the characteristic green fluorescence, indicating that not only had they ingested the occlusion bodies but also the virus had replicated and infected different tissues. Similar results were obtained with the jack pine budworm, Choristoneura pinus pinus Freeman, which has an identical life history. The advantages of early-instar intervention to minimize defoliation by using control agents such as the ecdysteroid agonist, tebufenozide (RH-5992, Mimic® formulation), are discussed.

Résumé

Nous avons découvert que, contrairement à la croyance générale, les larves de premier stade de la Tordeuse des bourgeons de l’épinette, Choristoneura fumiferana, se nourrissent. Leur canal alimentaire devient rouge lorsqu’elles sont soumises à un régime contenant le colorant rouge amaranthe. Les larves râclent la surface d’aiguilles de sapin enduites de rhodamine et ingèrent le produit fluorescent qui se retrouve dans les boulettes fécales déposées dans l’hibernaculum. A leur sortie de l’hibernaculum, des larves ont été acheminées vers la surface interne d’un tube de verre enduit de corps d’inclusion polyhédriques (PIB) d’un virus recombinant de C. fumiferana (CfMNPV) contenant le gène de la protéine fluorescente verte (GFP); les larves sont alors devenues vertes et fluorescentes, ce qui indique non seulement qu’elles ont ingéré les corps d’inclusion, mais qu’il y a eu replication du virus qui a infecté plusieurs tissus. Des résultats semblables ont été obtenus chez la Tordeuse du pin gris, C. pinus pinus Freeman, qui a le même type de cycle biologique. Les avantages d’intervenir dès les premiers stades pour minimiser la défoliation au moyen d’agents de lutte comme le tébufénozide (RH-5992, formule Mimic®), un agoniste ecdystéroïde, sont examinés.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atwood, C.E. 1944. The feeding habits of young spruce budworm larvae. The Canadian Entomologist 76: 6468.CrossRefGoogle Scholar
Barrett, J.W., Brownright, A.J., Primavera, M.J., and Palli, S.R. 1998. Studies on the nucleopolyhedrosis virus infection process in insects using the green fluorescent protein as a reporter. Journal of Virology 72: 33773382.Google Scholar
Cadogan, B.L., Retnakaran, A., and Meating, J. 1997. Efficacy of RH-5992, a new insect growth regulator against the spruce budworm (Lepidoptera: Tortricidae) in a boreal forest. Journal of Economic Entomology 90: 551559.Google Scholar
Chatelain, M.P., and Goyer, R.A. 1980. Seasonal development of the seedbugs, Leptoglossus corculus and Tetyra bipunctata on loblolly pine in a Louisiana seed orchard. Proceedings of the Louisiana Academy of Science 43: 3436.Google Scholar
Floater, G.J. 1997. Rainfall, nitrogen and host plant condition: consequences for the processionary caterpillar, Ochrogaster lunifer. Ecological Entomology 22: 247257.Google Scholar
Grisdale, D.G. 1966. A laboratory method for mass rearing the Eastern Spruce Budworm, Choristoneura fumiferana. pp. 223231in Smith, C.N. (Ed.), Insect Colonization and Mass Production. Academic Press, New York.Google Scholar
Grisdale, D.G. 1972. An improved method for producing large numbers of second-instar spruce budworm larvae, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist 104: 19551957.Google Scholar
McGugan, B.M. 1954. Needle-mining habits and larval instars of the spruce budworm. The Canadian Entomologist 86: 439454.Google Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist 97: 5862.CrossRefGoogle Scholar
Palli, S.R., Primavera, M., Lambert, D., and Retnakaran, A. 1995. Age-specific effects of a non-steroidal ecdysone agonist, RH-5992, on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). European Journal of Entomology 92: 325332.Google Scholar
Payne, N., Retnakaran, A., and Cadogan, B.L. 1996. Development and evaluation of a model for the aerial application of Mimic® to control the eastern spruce budworm, Choristoneura fumiferana (Clem.). Crop Protection 16: 285290.CrossRefGoogle Scholar
Prebble, M.L. 1975. Spruce budworm, Choristoneura fumiferana Clem. Introduction. pp. 7684in Prebble, M.L. (Ed.), Aerial Control of Forest Insects in Canada: a Review of Control Projects Employing Chemical and Biological Insecticides. Department of the Environment, Ottawa, Ont.Google Scholar
Retnakaran, A., Lauzon, H., and Fast, P. 1983. Bacillus thuringiensis induced anorexia in the spruce budworm, Choristoneura fumiferana. Entomologia Experimentalis et Applicata 34: 233239.Google Scholar
Retnakaran, A., Hiruma, K., Palli, S.R., and Riddiford, L.M. 1995. Molecular analysis of the mode of action of RH-5992, a lepidopteran-specific, non-steroidal ecdysteroid agonist. Insect Biochemistry and Molecular Biology 25: 109117.Google Scholar
Retnakaran, A., Macdonald, A., Tomkins, W., Davis, C., Brownwright, A.J., and Palli, S.R. 1997 a. Ultrastructural effects of a non-steroidal ecdysone agonist, RH-5992, on the sixth instar larva of the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology 43: 5568.CrossRefGoogle Scholar
Retnakaran, A., Smith, L.F.R., Tomkins, W.L., Primavera, M.J., Palli, S.R., Payne, N., and Jobin, L. 1997 b. Effect of RH-5992, a nonsteroidal ecdysone agonist, on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae): laboratory, greenhouse, and ground spray trials. The Canadian Entomologist 129: 871885.CrossRefGoogle Scholar
Rose, A.H., and Lindquist, O.H. 1973. Insects of eastern pines. Canadian Forestry Service Forestry Technical Report 1313.Google Scholar
Sundaram, K.M.S., Nott, R., and Curry, J. 1996. Deposition, persistence and fate of tebufenozide (RH-5992) in some terrestrial and aquatic components of a boreal forest environment after aerial application of Mimic®. Journal of Environmental Science and Health Part B 31: 699750.Google Scholar
Volney, W.J.A. 1989. Biology and dynamics of North American coniferophagous Choristoneura populations. Agricultural and Zoological Reviews 3: 133155.Google Scholar