Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T00:09:08.286Z Has data issue: false hasContentIssue false

Factors influencing oviposition by Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat spikes (Gramineae)1

Published online by Cambridge University Press:  31 May 2012

M.A.H. Smith
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.J. Lamb*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
2 Author to whom all correspondence should be addressed (E-mail: rlamb@em.agr.ca).

Abstract

Factors that might contribute to variability in the densities of wheat midge eggs, Sitodiplosis mosellana (Géhin), on common and durum wheats, Triticum aestivum L. and Triticum durum Desf., were investigated to improve the quantification of oviposition preferences in relation to crop resistance. Egg densities on wheat spikes were highly variable, with a similar contagious distribution in the laboratory and field, although variance was highest in the laboratory. Females laid eggs in small groups, usually of one to six eggs; most infested spikes had more than one egg group. Females showed no preference for ovipositing on different parts of a spike, although spikelets on one side and at the base often received fewer eggs because these spikelets were covered by the flag leaf and inaccessible for longer than others. Oviposition rates varied from night to night, probably related to the weather. Females showed no preference for spikes at different growth stages, from the time spikes began to emerge until at least flowering. Spike size did not affect egg density, and spike height was a factor only for spikes deep within or protruding above the canopy. Sources of environmental variation such as effects of weather on oviposition rates in the field or spatial phenomena in cages were measurable but of secondary importance. In the field, comparisons among spikes which emerged on the same day could reduce variation in egg density. In the laboratory, variation in egg density could be reduced by using arrays of excised spikes arranged at the same height, leaving the central portion of the array empty. The primary cause of high variability in egg density among spikes was variation in egg-group size and the presence of multiple egg groups on a single spike, factors which cannot be experimentally controlled because they are the result of oviposition behaviour rather than environmental heterogeneity.

Résumé

Nous avons examiné les facteurs qui peuvent contribuer à la variabilité de la densité des oeufs de la Cécidomyiie du blé, Sitodiplosis mosellana (Géhin), sur le blé tendre Triticum aestivum L. et le blé dur Triticum durum Desf., dans le but d’améliorer la méthode de quantification des préférences de ponte en fonction de la résistance de la plante hôte. La densité des oeufs est très variable et nous avons observé la même contagion en nature et en laboratoire, avec une variance plus élevée en laboratoire. Les femelles pondent leurs oeufs en petits groupes, généralement de un à six oeufs; la plupart des épis infestés portent plusieurs groupes d’oeufs. Les femelles ne semblent pas avoir de préférence pour une partie ou l’autre d’un épi pour pondre leurs oeufs, mais les épillets d’un côté et à la base reçoivent souvent moins d’oeufs parce qu’ils sont recouverts par la feuille terminale et sont inaccessibles pendant plus longtemps. La fréquence des pontes varie de nuit en nuit, probablement en fonction des conditions climatiques. Les femelles ne manifestent pas de préférence pour des épis qui ont atteint un stade particulier de croissance, depuis l’émergence des épis au moins jusqu’à la floraison. La taille des épis n’affecte pas la densité des oeufs et leur hauteur n’a de l’influence que dans le cas d’épis placés très bas ou d’épis qui dépassent le sommet de la végétation. Les sources de variations environnementales, tels les effets du climat, sur la fréquence des pontes en nature ou les phénomènes spatiaux dans les cages sont mesurables, mais leur importance est secondaire. En nature, il y a moins de variation dans la densité des oeufs parmi les épis émergés le même jour. En laboratoire, la variation de la densité des oeufs peut être réduite par un arrangement des épis de façon à ce que les épis cueillis soient disposés à la même hauteur laissant vide la portion centrale de l’arrangement. Les principales causes de variation de la densité des oeufs entre les épis sont la variation du nombre d’oeufs dans un groupe et la présence de plusieurs groupes d’oeufs sur un même épi; ce sont là des facteurs impossibles à manipuler expérimentalement, puisqu’ils relèvent du comportement de ponte plutôt que de l’hétérogénéité du milieu.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. 1790 of the Cereal Research Centre, Winnipeg, Manitoba.

References

Barker, P.S., McKenzie, R.I.H. 1996. Possible sources of resistance to the wheat midge in wheat. Canadian Journal of Plant Science 76: 689–95CrossRefGoogle Scholar
Barnes, H.F. 1956. Gall midges of economic importance. Volume VII: gall midges of cereal crops. London: Crosby Lockwood & SonGoogle Scholar
Basedow, T. 1977. Studies on the migration of the wheat blossom midges Contarinia tritici (Kirby) and Sitodiplosis mosellana (Géhin) (Dipt., Cecidomyidae) in relation to wind direction and to wheat fields. Zeitschrift für Angewandte Entomologie 83: 173–83CrossRefGoogle Scholar
Ding, H., Lamb, R.J. 1999. Oviposition and larval establishment of Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat (Gramineae) at different growth stages. The Canadian Entomologist 131: 475–81CrossRefGoogle Scholar
Elliott, J.M. 1977. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association Scientific Publication 25Google Scholar
Elliott, R.H., Mann, L.W. 1996. Susceptibility of red spring wheat, Triticum aestivum L. cv. Katepwa, during heading and anthesis to damage by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 128: 367–75CrossRefGoogle Scholar
Environment Canada. 1999. Monthly meteorological summary, Winnipeg International Airport. Saskatoon, Saskatchewan: Commercial Weather ServicesGoogle Scholar
Hayward, H.E. 1938. The structure of economic plants. New York: MacMillan CoGoogle Scholar
Houpert, G. 1972. Répartition dans les épis des infestations des cécidommyies des fleurs de blé. Bulletin de l'École Nationale Superieure d'Agronomie et des Industries Alimentaires 14: 3740Google Scholar
Kurppa, S. 1989. Susceptibility and reaction of wheat and barley varieties grown in Finland to damage by the orange wheat blossom midge Sitodiplosis mosellana (Géhin). Annales Agriculturae Fenniae 28: 371–83Google Scholar
Lamb, R.J., Wise, I.L., Olfert, O.O., Gavloski, J., Barker, P.S. 1999. Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. The Canadian Entomologist 131: 387–97CrossRefGoogle Scholar
Lamb, R.J., McKenzie, R.I.H., Wise, I.L., Barker, P.S., Smith, M.A.H., Olfert, O.O. 2000 a. Resistance to Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). The Canadian Entomologist 132: 591605CrossRefGoogle Scholar
Lamb, R.J., Tucker, J.R., Wise, I.L., Smith, M.A.H. 2000 b. Trophic interaction between Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) and spring wheat: implications for yield and seed quality. The Canadian Entomologist 132: 607–25CrossRefGoogle Scholar
Lamb, R.J., Smith, M.A.H., Wise, I.L., Clarke, P., Clarke, J. 2001. Oviposition deterrence to Sitodiplosis mosellana (Diptera: Cecidomyiidae): a source of resistance for durum wheat (Gramineae). The Canadian Entomologist 133: 579–91CrossRefGoogle Scholar
Mukerji, M.K., Olfert, O.O., Doane, J.F. 1988. Development of sampling designs for egg and larval populations of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in wheat. The Canadian Entomologist 120: 497505CrossRefGoogle Scholar
Oakley, J.N. 1981. Wheat blossom midges. Ministry of Agriculture, Fisheries and Food Leaflet 788Google Scholar
Olfert, O.O., Mukerji, M.K., Doane, J.F. 1985. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in spring wheat in Saskatchewan. The Canadian Entomologist 117: 593–8CrossRefGoogle Scholar
Percival, A. 1921. The wheat plant. London: Duckworth & CoGoogle Scholar
Pivnick, K.A., Labbé, E. 1993. Daily patterns of activity of females of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 125: 725–36CrossRefGoogle Scholar
Poole, R.W. 1974. An introduction to quantitative ecology. New York: McGraw-HillGoogle Scholar
Reeher, M.M. 1945. The wheat midge in the Pacific Northwest. United States Department of Agriculture Circular 732Google Scholar
SAS Institute Inc. 1989. SAS/STAT® user's guide, version 6, 4th edition. Cary, North Carolina: SAS Institute IncGoogle Scholar
Taylor, L.R. 1961. Aggregation, variance and the mean. Nature (London) 189: 732–5CrossRefGoogle Scholar
Taylor, L.R. 1984. Assessing and interpreting the spatial distributions of insect populations. Annual Review of Entomology 29: 321–57CrossRefGoogle Scholar
Wise, I.L., Lamb, R.J., Smith, M.A.H. 2001. Domestication of wheats (Gramineae) and their susceptibility to herbivory by Sitodiplosis mosellana (Diptera: Cecidomyiidae). The Canadian Entomologist 133: 255–67CrossRefGoogle Scholar
Wright, A.T., Doane, J.F. 1987. Wheat midge infestation of spring cereals in northeastern Saskatchewan. Canadian Journal of Plant Science 67: 117–20CrossRefGoogle Scholar
Zadoks, J.C., Chang, T.T., Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415–21CrossRefGoogle Scholar