Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T15:11:10.136Z Has data issue: false hasContentIssue false

EVALUATION OF AN OVIPOSITION TRAP FOR MONITORING EGG POPULATIONS OF DIABROTICA SPP. (COLEOPTERA: CHRYSOMELIDAE) IN FIELD CORN

Published online by Cambridge University Press:  31 May 2012

Barbara S. Mulock
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Cliff R. Ellis
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Gary H. Whitfield
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Traps consisting of open, cylindrical tins containing moistened clay aggregates were evaluated as field oviposition sites for corn rootworm, Diabrotica spp. Six trap features were investigated: clay aggregate size, water saturation level, trap opening, trap cover, trap volume, and trap position relative to corn plants. More eggs were recovered in traps containing clay aggregates ranging from 0.5 to 3.5 mm diameter compared with aggregates from 2.5 to 8.0 mm diameter. Saturation of the trap to 2.5 cm from the opening resulted in greater egg recovery compared with traps saturated to 6.0 cm from the opening. Covering the exposed surface of the trap with a metal ring and/or a corn leaf increased egg recovery in the field.

Oviposition traps were placed in four commercial corn fields in 1990 and three in 1991 to monitor egg populations. Egg recovery from traps and estimates of the absolute egg population in the soil were compared with densities of adult corn rootworm to predict larval damage on roots of corn planted the next year. In five fields, adult populations were above the current economic threshold of one beetle per plant. However, economic damage to roots occurred only in the field in which the most eggs were recovered from traps (226.6 eggs per trap) and soil samples (30.2 eggs per litre). Mean egg recovery per trap per field was correlated with mean damage ratings from untreated corn.

Résumé

Des pièges fabriqués de boîtes de fer blanc cylindriques ouvertes et contenant des boulettes d’argile humide ont été installés dans des champs de maïs et leur efficacité à attirer des Chrysomèles des racines du maïs, Diabrotica spp. au moment de la ponte a été évaluée. Six caractéristiques particulières ont été examinées : taille des boulettes d’argile, degré de saturation en eau, ouverture, couverture et volume du piège, position du piège relativement aux plants de maïs. Les pièges contenant des boulettes d’argile de 0,5 à 3,5 mm de diamètre ont recueilli plus d’oeufs que les pièges garnis de boulettes de 2,5 à 8,0 mm de diamètre. Les pièges saturés d’eau jusqu’à 2,5 cm de l’ouverture ont donné plus d’oeufs que les pièges saturés d’eau jusqu’à 6,0 cm de l’ouverture. Les pièges recouverts d’un anneau de métal et (ou) d’une feuille de maïs sur la surface exposée ont donné plus d’oeufs.

Des pièges ont été placés dans quatre cultures commerciales de maïs en 1990 et trois cultures en 1991 dans le but de mesurer les populations d’oeufs. Le nombre d’oeufs obtenus dans les pièges et l’estimation des populations absolues d’oeufs dans le sol ont été comparés aux densités de chrysomèles adultes, ce qui a permis de prédire les dommages éventuels causés par les larves aux racines du maïs planté l’année suivante. Dans cinq des champs, les populations adultes dépassaient le seuil économique d’un chrysomèle par plant. Cependant, les dommages aux racines n’ont atteint le seuil économique que dans le champ où les pièges (226,6 oeufs par piège) et les échantillons de sol (30,2 oeufs par litre) contenaient le plus d’oeufs. Le nombre moyen d’oeufs par piège par champ était en corrélation avec les taux moyens de dommage dans les champs de maïs non traités.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atyeo, W.T., Weekman, G.T., and Lawson, D.E.. 1964. The identification of Diabrotica species by chorion sculpturing. Journal of the Kansas Entomological Society 37: 911.Google Scholar
Branson, T.F. 1986. Larval feeding behavior and host-plant resistance in maize. pp. 159–182 in Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of the Pest Diabrotica. Springer-Verlag, New York, NY. 260 pp.Google Scholar
Brust, G.E., and House, G.J.. 1990. Influence of soil texture, soil moisture, organic cover, and weeds on oviposition preference of southern corn rootworm (Coleoptera: Chrysomelidae). Environmental Entomology 19: 966971.CrossRefGoogle Scholar
Deloitte and Touche. 1992. Insurance Contracts to Manage Corn Rootworm Risks. Prepared for: Ontario Pesticide Advisory Committee, Toronto, Ont. Deloitte and Touche Management Consultants. 26 pp.Google Scholar
Dominique, C.R., Yule, W.N., and Martel, P.. 1983. Influence of soil type, soil moisture, and soil surface conditions on oviposition preference of the northern corn rootworm, Diabrotica longicornis (Coleoptera: Chrysomelidae). The Canadian Entomologist 115: 10431046.CrossRefGoogle Scholar
Foster, R.E., Ruesink, W.G., and Luckmann, W.H.. 1979. Northern corn rootworm egg sampling. Journal of Economic Entomology 72: 659663.CrossRefGoogle Scholar
Foster, R.E., Tollefson, J.J., Nyrop, J.P., and Hein, G.L.. 1986. Value of adult corn rootworm (Coleoptera: Chrysomelidae) population estimates in pest management decision making. Journal of Economic Entomology 79: 303310.CrossRefGoogle Scholar
Hein, G.L., and Tollefson, J.J.. 1984. Comparison of adult corn rootworm (Coleoptera: Chrysomelidae) trapping techniques as population estimators. Environmental Entomology 13: 266271.CrossRefGoogle Scholar
Hein, G.L., and Tollefson, J.J.. 1985. Use of the Pherocon AM trap as a scouting tool for predicting damage by corn rootworm (Coleoptera: Chrysomelidae) larvae. Journal of Economic Entomology 78: 200203.CrossRefGoogle Scholar
Hein, G.L., Tollefson, J.J., and Hinz, P.N.. 1985. Design and cost considerations in the sampling of northern and western corn rootworm (Coleoptera: Chrysomelidae) eggs. Journal of Economic Entomology 78: 14951499.CrossRefGoogle Scholar
Hill, R.E., and Mayo, ZB. 1974. Trap-corn to control corn rootworms. Journal of Economic Entomology 67: 748750.CrossRefGoogle Scholar
Hill, T.M., and Peters, D.C.. 1971. A method of evaluating post-plant insecticide treatments for control of western corn rootworm larvae. Journal of Economic Entomology 64: 764765.CrossRefGoogle Scholar
Kirk, V.M. 1981. Earthworm burrows as oviposition sites for western and northern corn rootworms (Diabrotica: Coleoptera). Journal of the Kansas Entomological Society 54: 6874.Google Scholar
Mayo, ZB Jr., 1986. Field evaluation of insecticides for control of larvae of corn rootworms. pp. 183–203 in Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of the Pest Diabrotica. Springer-Verlag, New York, NY. 260 pp.Google Scholar
Metcalf, R.L. 1986. Foreword. pp. vii–xv in Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of the Pest Diabrotica. Springer-Verlag, New York, NY. 260 pp.Google Scholar
Preuss, K.P., Witkowski, J.F., and Raun, E.S.. 1974. Population suppression of western corn rootworm by adult control with ULV malathion. Journal of Economic Entomology 67: 651655.CrossRefGoogle Scholar
Ruesink, W.G. 1986. Egg sampling techniques. pp. 8399in Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of the Pest Diabrotica. Springer-Verlag, New York, NY. 260 pp.CrossRefGoogle Scholar
SAS Institute Inc. 1985. SAS User's Guide, Version 5 Edition. SAS Institute Inc., Cary, NC. 956 pp.Google Scholar
Shaw, J.T., Ellis, R.O., and Luckmann, W.H.. 1976. Apparatus and Procedure for Extracting Corn Rootworm Eggs from Soil. Illinois Natural History Survey of Biological Notes 96: 4 pp.Google Scholar
Stamm, D.E., Mayo, ZB, Campbell, J.B., Witkowski, J.F., Andersen, L.W., and Kozub, R.. 1985. Western corn rootworm (Coleoptera: Chrysomelidae) beetle counts as a means of making larval control recommendations in Nebraska. Journal of Economic Entomology 78: 794798.CrossRefGoogle Scholar
Steffey, K.L., Tollefson, J.J., and Hinz, P.N.. 1982. Sampling plan for population estimation of northern and western corn rootworm adults in Iowa cornfields. Environmental Entomology 11: 287291.CrossRefGoogle Scholar
Weiss, M.J., Mayo, ZB, and Newton, J.P.. 1983. Influence of irrigation practices on the spatial distribution of corn rootworm (Coleoptera: Chrysomelidae) eggs in the soil. Environmental Entomology 12: 12931295.CrossRefGoogle Scholar