Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T08:15:13.645Z Has data issue: false hasContentIssue false

ENVIRONMENTAL CONTROL OF DIAPAUSE AND POSTDIAPAUSE DEVELOPMENT IN TETRASTICHUS JULIS (HYMENOPTERA: EULOPHIDAE), A PARASITE OF THE CEREAL LEAF BEETLE, OULEMA MELANOPUS (COLEOPTERA: CHRYSOMELIDAE)

Published online by Cambridge University Press:  31 May 2012

James R. Nechols
Affiliation:
Department of Entomology, Cornell University, Ithaca, New York 14853
Maurice J. Tauber
Affiliation:
Department of Entomology, Cornell University, Ithaca, New York 14853
Robert G. Helgesen
Affiliation:
Department of Entomology, Cornell University, Ithaca, New York 14853

Abstract

Mature Telrastichus julis (Walker) larvae, which overwinter in the pupal cells of their dead cereal leaf beetle hosts, enter diapause in late summer. Diapause is maintained by warm conditions and short daylengths during late fall and early winter; it ends without a specific terminating stimulus. Subsequently the larvae remain in a state of postdiapause quiescence until soil temperatures rise above 9 °C, the theoretical threshold (t) for postdiapause development. Emergence of the central New York population occurs when the parasites have accumulated 162 degree days (D°) of heat above 9 °C. This K value is considerably lower than that previously reported for a population from Michigan.

Our study provides the first experimental evidence that both temperature and photoperiod regulate the rate of diapause development in a parasitic insect.

Résumé

Les larves matures de Tetrastichus julis (Walker) entrent en diapause à la fin de l’été et hivernent dans la cellule nymphale de leur hôte, le criocère des céréales, après la mort de celui-ci. La diapause est maintenue par les conditions douces et les courtes photopériodes qui prévalent à la fin de l’automne et au début de l’hiver; la terminaison de la diapause ne dépend d’aucun stimulus spécifique. Par la suite les larves demeurent dans un état de quiescent de postdiapause jusqu’à ce que la température du sol s’élève au-dessus de 9 °C, seuil théorique (t) du développement postérieur à la diapause. Pour les populations du centre de l’état de New York, l’émergence se produit lorsque les parasites ont accumulé l’équivalent thermique de 162 degrés-jours (D°) au-dessus de 9 °C. Cette valeur de k est nettement inférieure à celle rapportée antérieurement pour une population du Michigan.

Par cette étude, nous sommes les premiers à démontrer expérimentalement que la température et la photopériode sont tous deux impliqués dans la régulation de la vitesse du développement chez un insecte parasitique en diapause.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. F. and Kaya, H. K.. 1975. Influence of temperature on diapause termination in Ooencyrtus ennomus, an elm spanworm egg parasitoid. Ann. ent. Soc. Am. 68: 671672.CrossRefGoogle Scholar
Andrewartha, H. G. and Birch, L. C.. 1954. The Distribution and Abundance of Animals. University of Chicago Press.Google Scholar
Askew, R. R. 1971. Parasitic Insects. American Elsevier, New York.Google Scholar
Barr, R. O. et al. 1973. Ecologically and economically compatible pest control. Mem. ecol. Soc. Aust. 1: 241264.Google Scholar
Delucchi, V., Rosen, D., and Schlinger, E. I.. 1976. Relationship of systematics to biological control. pp. 8191in Huffaker, C. B. and Messenger, P. S. (Eds.), Theory and Practice of Biological Control. Academic Press, New York.CrossRefGoogle Scholar
Doutt, R. L. 1959. The biology of parasitic Hymenoptera. A. Rev. Ent. 4: 161182.CrossRefGoogle Scholar
Doutt, R. L., Annecke, D. P., and Tremblay, E.. 1976. Biology and host relationships of parasitoids. pp. 143168in Huffaker, C. B. and Messenger, P. S. (Eds.), Theory and Practice of Biological Control. Academic Press, New York.CrossRefGoogle Scholar
Doutt, R. L. and DeBach, P.. 1964. Some biological control concepts and questions. pp. 118142in DeBach, P. (Ed.), Biological Control of Insects Pests and Weeds. Chapman and Hall, London.Google Scholar
Dysart, R. J., Maltby, H. L., and Brunson, M. H.. 1973. Larval parasites of Oulema melanopus in Europe and their colonization in the United States. Entomophaga 18: 133167.CrossRefGoogle Scholar
Ellis, C. R., Harcourt, D. G., and Dubois-Martin, D.. 1978. The current status in Ontario of Tetrastichus julis (Hymenoptera: Eulophidae), a parasitoid of the cereal leaf beetle. Proc. ent. Soc. Ont. 109: 2326.Google Scholar
Fisher, R. C. 1971. Aspects of the physiology of endoparasitic Hymenoptera. Biol. Rev. 46: 243278.CrossRefGoogle Scholar
Gage, S. H. and Haynes, D. L.. 1975. Emergence under natural and manipulated conditions of Tetrastichus julis, an introduced larval parasite of the cereal leaf beetle, with reference to regional population management. Environ. Ent. 4: 425434.Google Scholar
Games, P. A. and Howell, J. H.. 1976. Pairwise multiple comparison procedures with unequal N's and/or variances: A Monte Carlo study. J. educ. Statistics 1: 113125.Google Scholar
Harcourt, D. G., Guppy, J. C., and Ellis, C. R.. 1977. Establishment and spread of Tetrastichus julis (Hymenoptera: Eulophidae), a parasitoid of the cereal leaf beetle in Ontario. Can. Ent. 109:473476.CrossRefGoogle Scholar
Haynes, D. L., Gage, S. H., and Fulton, W.. 1974. Management of the cereal leaf beetle pest ecosystem. Quaest. ent. 10: 165176.Google Scholar
Helgesen, R. G. and Haynes, D. L.. 1972. Population dynamics of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae): A model for age specific mortality. Can. Ent. 104: 797814.CrossRefGoogle Scholar
Masaki, S. 1977. Past and future. pp. 129148in Hidaki, T. (Ed.), Adaptation and Speciation in the Fall Webworm. Kodansha, Ltd., Tokyo.Google Scholar
Maslennikova, V. A. 1968. Control of seasonal development in parasitic insects. pp. 129152in Danilevsky, A. S. (Ed.), The Photoperiodic Adaptations in Insects and Acari. Leningrad State Univ. [In Russian, English abstract.]Google Scholar
Obrycki, J. J. and Tauber, M. J.. 1979. Seasonal synchrony of the parasite Perilitus coccinellae and its host Coleomegilla maculata. Environ. Ent. 8: 400405.CrossRefGoogle Scholar
Schlinger, E. I. and Doutt, R. L.. 1964. Systematics in relation to biological control. pp. 247280in DeBach, P. (Ed.), Biological Control of Insect Pests and Weeds. Chapman and Hall, London.Google Scholar
Schneiderman, H. A. and Horwitz, J.. 1958. The induction and termination of facultative diapause in the chalcid wasps Mormoniella vitripennis (Walker) and Tritneptis klugii (Ratzeburg).J. exp. Biol. 35: 520551.CrossRefGoogle Scholar
Schoonhoven, L. M. 1962. Diapause and the physiology of host-parasite synchronization in Bupalus piniarius L. (Geometridae) and Eucarcelia rutilla Vill. (Tachinidae). Archs Néerl. Zool. 15(2): 111174.Google Scholar
Stehr, F. W. 1970. Establishment in the United States of Tetrastichus julis, a larval parasite of the cereal leaf beetle. J. econ. Ent. 63: 19681969.CrossRefGoogle Scholar
Tauber, M. J. and Tauber, C. A.. 1973. Quantitative response to day length during diapause in insects. Nature(Lond.) 244: 296297.CrossRefGoogle Scholar
Tauber, M. J. and Tauber, C. A.. 1975. Criteria for selecting Chrysopa carnea biotypes for biological control: adult dietary requirements. Can. Ent. 107: 589595.Google Scholar
Tauber, M. J. and Tauber, C. A.. 1976. Insect seasonality: diapause maintenance, termination, and postdiapause development. A. Rev. Ent. 21: 81107.Google Scholar
Tauber, M. J. and Tauber, C. A.. 1978. Evolution of phenological strategies in insects: a comparative approach with eco-physiological and genetic considerations. pp. 5371in Dingle, H. (Ed.), Evolution of Insect Migration and Diapause. Springer-Verlag, New York.Google Scholar
Tauber, M. J. and Tauber, C. A.. 1978. Seasonal responses and their geographic variation in Chrysopa downesi: eco-physiological and evolutionary considerations. Can. J. Zool. (in press).Google Scholar
Vinson, B. S. and Iwantsch, G. E.. 1980. Host suitability for insect parasitoids. A. Rev. Ent. 25: 397419.CrossRefGoogle Scholar
Weseloh, R. M. 1973. Termination and induction of diapause in the gypsy moth larval parasitoid, Apanteles melanoscelus. J. Insect Physiol. 19: 20252033.Google Scholar