Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-04T03:45:13.127Z Has data issue: false hasContentIssue false

Energy expenditure affects the larval food preference in Propylea dissecta (Coleoptera: Coccinellidae)

Published online by Cambridge University Press:  24 April 2023

Lata Verma
Affiliation:
Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
Geetanjali Mishra
Affiliation:
Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
Omkar*
Affiliation:
Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
*
*Corresponding author. Email: omkar.lkouniv@gmail.com

Abstract

Food preferences and choices are common among animals, including insects. Studies on food preferences have been done on coccinellids using eggs and aphids as diet, but information on the food choices of the aphidophagous ladybird, Propylea dissecta (Coleoptera: Coccinellidae), under laboratory conditions, is scarce. This study examined the effect of physical activity (walking) on food choice. We reared P. dissecta larvae on aphids, Aphis craccivora (Hemiptera: Aphididae), until the fourth-instar stage, and then allowed the fourth-instar larvae to walk on a glass rod for different time intervals to illustrate the energetic costs of foraging. After walking, larvae were provided simultaneous food choices of equidistantly placed food, i.e., A. craccivora, conspecific eggs, and heterospecific eggs. As the walking time duration gradually increased, the level of larval activity increased, resulting in poorer food choices.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject Editor: Katie Marshall

References

Abdel-Wahab, A.H., Michaud, J.P., Bayoumy, M.H., Awadalla, S.S., and El-Gendy, M. 2017. Differences in flight activity of Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae) following emergence, mating, and reproduction. Environmental Entomology, 46: 13591364.CrossRefGoogle ScholarPubMed
Babicz-Zielińska, E. 2006. Role of psychological factors in food choice: a review. Polish Journal of Food and Nutrition Sciences, 15: 4.Google Scholar
Barreiro-Hurlé, J., Gracia, A., and de Magistris, T. 2010. Does nutrition information on food products lead to healthier food choices? Food Policy, 35: 221229.CrossRefGoogle Scholar
Biddinger, D.J., Weber, D.C., and Hull, L.A. 2009. Coccinellidae as predators of mites: Stethorini in biological control. BioControl, 51: 268283.Google Scholar
Biesinger, Z.Y. and Haefner, J.W. 2005. Proximate cues for predator searching: a quantitative analysis of hunger and encounter rate in the ladybird beetle, Coccinella septempunctata . Animal Behaviour, 69: 235244.CrossRefGoogle Scholar
Blackman, R.L. 1967. Selection of aphid prey by Adalia bipunctata L. and Coccinella septempunctata L. Annals of Applied Biology, 59: 331338.CrossRefGoogle Scholar
Boivin, G., Roger, C., Coderre, D., and Wajnberg, E. 2010. Learning affects prey selection in larvae of a generalist coccinellid predator. Entomologia Experimentalis et Applicata, 135: 4855.CrossRefGoogle Scholar
Bokhorst, S., Ronfort, C., Huiskes, A., Convey, P., and Aerts, R. 2007. Food choice of Antarctic soil arthropods clarified by stable isotope signatures. Polar Biology, 30: 983990.CrossRefGoogle Scholar
Cabral, S., Soares, A.O., and Garcia, P. 2009. Predation by Coccinella undecimpunctata L. (Coleoptera: Coccinellidae) on Myzus persicae Sulzer (Homoptera: Aphididae): effect of prey density. BioControl, 50: 2529.Google Scholar
Canovai, R., Benelli, G., Ceragioli, T., Lucchi, A., and Canale, A. 2019. Prey selection behaviour in the multicoloured Asian ladybird, Harmonia axyridis (Coleoptera: Coccinellidae). Applied Entomology and Zoology, 54: 213222.CrossRefGoogle Scholar
Conner, M. and Armitage, C.J. 2006. Social psychological models of food choice. Frontiers in Nutrition, 3: 41.Google Scholar
Crookes, S., Deroy, E.M., Dick, J.T., and MacIsaac, H.J. 2019. Comparative functional responses of introduced and native ladybird beetles track ecological impact through predation and competition. Biological Invasions, 21: 519529.CrossRefGoogle Scholar
Duffy, J.E. and Hay, M.E. 1991. Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology, 72: 12861298.CrossRefGoogle Scholar
Egas, M., Norde, D.J., and Sabelis, M.W. 2003. Adaptive learning in arthropods: spider mites learn to distinguish food quality. Experimental and Applied Acarology, 30: 233247.CrossRefGoogle ScholarPubMed
Enriquez, J.P. and Archila-Godinez, J.C. 2021. Social and cultural influences on food choices: a review. Critical Reviews in Food Science and Nutrition, 62: 17.Google ScholarPubMed
Escalona, H.E., Zwick, A., Li, H.S., Li, J., Wang, X., Pang, H., et al. 2017. Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini). BMC Evolutionary Biology, 17: 111.CrossRefGoogle ScholarPubMed
Eubanks, M.D. and Denno, R.F. 2000. Health food versus fast food: the effects of prey quality and mobility on prey selection by a generalist predator and indirect interactions among prey species. Ecological Entomology, 25: 140146.CrossRefGoogle Scholar
Evans, E.W. 2009. Lady beetles as predators of insects other than Hemiptera. Biological Control, 51: 255267.CrossRefGoogle Scholar
Ferrer, A., Dixon, A.F., and Hemptinne, J. 2008. Prey preference of ladybird larvae and its impact on larval mortality, some life-history traits of adults and female fitness. Bulletin of Insectology, 61: 5.Google Scholar
Fouche, Q., Hedouin, V., and Charabidze, D. 2021. Effect of density and species preferences on collective choices: an experimental study on maggot aggregation behaviours. Journal of Experimental Biology, 224: 233791.CrossRefGoogle Scholar
Francke, D.L., Harmon, J.P., Harvey, C.T., and Ives, A.R. 2008. Pea aphid dropping behaviour diminishes foraging efficiency of a predatory ladybeetle. Entomologia Experimentalis et Applicata, 127: 118124.CrossRefGoogle Scholar
Furst, T., Connors, M., Bisogni, C.A., Sobal, J., and Falk, L.W. 1996. Food choice: a conceptual model of the process. Appetite, 26: 247266.CrossRefGoogle Scholar
Ganas, J., Ortmann, S., and Robbins, M.M. 2008. Food preferences of wild mountain gorillas. American Journal of Primatology, 70: 927938.CrossRefGoogle ScholarPubMed
Giorgi, J.A., Vandenberg, N.J., McHugh, J.V., Forrester, J.A., Ślipiński, S.A., Miller, K.B., et al. 2009. The evolution of food preferences in Coccinellidae. Biological Control, 51: 215231.CrossRefGoogle Scholar
Hegab, I.M., Pan, H., Dong, J., Wang, A., Yin, B., Yang, S., and Wei, W. 2014. Effects of physical attributes and chemical composition of novel foods on food selection by Norway rats (Rattus norvegicus). Journal of Pesticide Science, 87: 99106.Google Scholar
Hodek, I. 1996. Food relationships. In Ecology of Coccinellidae. Edited by Hodek, I. and Honěk, A.. Springer Dordrecht, Dordrecht, The Netherlands. Pp. 143238.CrossRefGoogle Scholar
Hodek, I. and Honěk, A. 2009. Scale insects, mealybugs, whiteflies and psyllids (Hemiptera, Sternorrhyncha) as prey of ladybirds. Biological Control, 51: 232243.CrossRefGoogle Scholar
Honěk, A. and Hodek, I. 1996. Distribution in habitats. In Ecology of Coccinellidae. Edited by Hodek, I. and Honěk, A.. Springer Dordrecht, Dordrecht, The Netherlands. Pp. 95141.CrossRefGoogle Scholar
Kalinoski, R.M. and Delong, J.P. 2016. Beyond body mass: how prey traits improve predictions of functional response parameters. Oecologia, 180: 543550.CrossRefGoogle ScholarPubMed
Kratina, P., Vos, M., Bateman, A., and Anholt, B.R. 2009. Functional responses modified by predator density. Oecologia, 159: 425433.CrossRefGoogle ScholarPubMed
Larson, N. and Story, M. 2009. A review of environmental influences on food choices. Annals of Behavioral Medicine, 38: 5673.CrossRefGoogle ScholarPubMed
Lawless, H.T. and Heymann, H. 2010. Physiological and psychological foundations of sensory function. In Sensory evaluation of food: principles and practices. Edited by Lawless, H.T. and Heymann, H.. Springer Nature, Berlin, Germany. Pp. 1956.CrossRefGoogle Scholar
Lee, K.P., Cory, J.S., Wilson, K., Raubenheimer, D., and Simpson, S.J. 2006. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proceedings of the Royal Society B: Biological Sciences, 273: 823829.CrossRefGoogle Scholar
Lipp, A., Wolf, H., and Lehmann, F.O. 2005. Walking on inclines: energetics of locomotion in the ant Camponotus . Journal of Experimental Biology, 208: 707719.CrossRefGoogle ScholarPubMed
Lorenz, M.W. and Gäde, G. 2009. Hormonal regulation of energy metabolism in insects as a driving force for performance. Integrative and Comparative Biology, 49: 380392.CrossRefGoogle ScholarPubMed
Lundgren, J.G. 2009. Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biological Control, 51: 294305.CrossRefGoogle Scholar
Majerus, M.E.N. 2016. A natural history of ladybird beetles. Cambridge University Press, Cambridge, United Kingdom. https://doi.org/10.1017/CBO9781316336960.CrossRefGoogle Scholar
Matavelli, C., Carvalho, M.J.A., Martins, N.E., and Mirth, C.K. 2015. Differences in larval nutritional requirements and female oviposition preference reflect the order of fruit colonization of Zaprionus indianus and Drosophila simulans . Journal of Insect Physiology, 82: 6674.CrossRefGoogle ScholarPubMed
Mishra, G., Omkar, , Kumar, B., and Pandey, G. 2012. Stage- and age-specific predation in four aphidophagous ladybird beetles. Biocontrol Science and Technology, 22: 463476.CrossRefGoogle Scholar
Neal, D.T., Wood, W., Wu, M., and Kurlander, D. 2011. The pull of the past: when do habits persist despite conflict with motives? Personality and Social Psychology Bulletin, 37: 14281437.CrossRefGoogle ScholarPubMed
Nedved, O. and Salvucci, S. 2008. Ladybird Coccinella septempunctata (Coleoptera: Coccinellidae) prefers toxic prey in laboratory choice experiment. European Journal of Entomology, 105: 431436.CrossRefGoogle Scholar
Nesbit, C.M., Wilby, A., Roberts, M.R., and Menendez, R. 2015. Selection of aphid prey by a generalist predator: do prey chemical defences matter? Ecological Entomology, 40: 767775.CrossRefGoogle Scholar
Neupert, S. 2007. Novel members of the AKH/RPCH peptide family: isolation of AKH from the corpora cardiaca of the two beetle species, Cheilomenes lunata and Coccinella septempunctata . Pestycydy, 3: 3943.Google Scholar
Obrycki, J.J., Harwood, J.D., Kring, T.J., and O’Neil, R.J. 2009. Aphidophagy by Coccinellidae: application of biological control in agroecosystems. Biological Control, 51: 244254.CrossRefGoogle Scholar
Omkar and Bind, R.B. 1998. Prey preference of a lady beetle, Cheilomenes (Menochilus) sexmaculata (Fabricius) (Coleoptera: Coccinellidae). Journal of Aphidology, 12: 6366.Google Scholar
Omkar and Bind, R.B. 2004. Prey quality–dependent growth, development and reproduction of a biocontrol agent, Cheilomenes sexmaculata (Fabricius) (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 14: 665673.Google Scholar
Omkar and Mishra, G. 2005. Preference–performance of a generalist predatory ladybird: a laboratory study. Biological Control, 34: 187195.Google Scholar
Omkar, Pervez, A., and Gupta, A.K. 2004. Role of surface chemicals in egg cannibalism and intraguild predation by neonates of two aphidophagous ladybirds, Propylea dissecta and Coccinella transversalis . Journal of Applied Entomology, 128: 691695.CrossRefGoogle Scholar
Omkar, Pervez, A., and Gupta, A.K. 2006. Why do neonates of aphidophagous ladybird beetles preferentially consume conspecific eggs in presence of aphids? Biocontrol Science and Technology, 16: 233243.Google Scholar
Omkar, Pervez, A., Mishra, G., Srivastava, S., Singh, S.K., and Gupta, A.K. 2005. Intrinsic advantages of Cheilomenes sexmaculata over two coexisting Coccinella species (Coleoptera: Coccinellidae). Insect Science, 12: 179184.Google Scholar
Pervez, A. and Chandra, S. 2018. Host plant–mediated prey preference and consumption by an aphidophagous ladybird, Menochilus sexmaculatus (Fabricius) (Coleoptera: Coccinellidae). Egyptian Journal of Biological Pest Control, 28: 16.CrossRefGoogle Scholar
Pervez, A., Chandra, S., and Kumar, R. 2021. Effect of dietary history on intraguild predation and cannibalism of ladybirds’ eggs. International Journal of Tropical Insect Science, 41: 26372642.CrossRefGoogle Scholar
Pervez, A. and Omkar. 2004. Temperature-dependent life attributes of an aphidophagous ladybird, Propylea dissecta . Biocontrol Science and Technology, 14: 587594.CrossRefGoogle Scholar
Prescott, J. and Tepper, B.J. (editors). 2004. Genetic variation in taste sensitivity. CRC Press, Boca Raton, Florida, United States of America.CrossRefGoogle Scholar
Provost, C., Lucas, E., Coderre, D., and Chouinard, G. 2006. Prey selection by the lady beetle Harmonia axyridis: the influence of prey mobility and prey species. Journal of Insect Behavior, 19: 265277.CrossRefGoogle Scholar
Rashed, H.S.A. 2020. Efficiency of the convergent ladybird beetle Hippodamia convergens against the legume aphid Aphis craccivora in laboratory and semi-felid conditions. Annals of Agricultural Science, Moshtohor, 58: 655664.CrossRefGoogle Scholar
Reinhold, K. 1999. Energetically costly behaviour and the evolution of resting metabolic rate in insects. Functional Ecology, 13: 217224.CrossRefGoogle Scholar
Righini, N., Garber, P.A., and Rothman, J.M. 2017. The effects of plant nutritional chemistry on food selection of Mexican black howler monkeys (Alouatta pigra): the role of lipids. American Journal of Primatology, 79: 115.CrossRefGoogle ScholarPubMed
Roger, C., Coderre, D., and Boivin, G. 2000. Differential prey utilization by the generalist predator Coleomegilla maculata lengi according to prey size and species. Entomologia Experimentalis et Applicata, 94: 313.CrossRefGoogle Scholar
Rosenheim, J.A. and Corbett, A. 2003. Omnivory and the indeterminacy of predator function: can a knowledge of foraging behaviour help? Ecology, 84: 25382548.CrossRefGoogle Scholar
Rozin, P. 2006. The integration of biological, social, cultural and psychological influences on food choice. In The psychology of food choice. Edited by Shepherd, R. and Raats, M.. CABI, Wallingford, United Kingdom. Pp. 1939.CrossRefGoogle Scholar
Šenkeříková, P. and Nedvěd, O. 2013. Preference among three aphid species by the predatory ladybird beetle Harmonia axyridis in the laboratory. In Proceedings of the IOBC, Hluboka, Czech Republic, 30 October–3 November 2011. Edited by Sloggett, J.J., Brown, P.M.J., and Roy, H.E.. IOBC/WPRS Bulletin, Hluboka, Czech Republic. Pp 123130.Google Scholar
Seravin, L.N. and Orlovskaja, E.E. 1977. Feeding behaviour of unicellular animals. I. The main role of chemoreception in the food choice of carnivorous protozoa. Acta Protozoologica, 16: 34.Google Scholar
Shepherd, R. 1999. Social determinants of food choice. Proceedings of the Nutrition Society, 58: 807812.CrossRefGoogle ScholarPubMed
Sloggett, J.J. and Majerus, M.E. 2000. Habitat preferences and diet in the predatory Coccinellidae (Coleoptera): an evolutionary perspective. Biological Journal of the Linnean Society, 70: 6388.CrossRefGoogle Scholar
Small, D.M. and Prescott, J. 2005. Odor–taste integration and the perception of flavor. Experimental Brain Research, 166: 345357.CrossRefGoogle ScholarPubMed
Soares, A.O., Coderre, D., and Schanderl, H. 2004. Dietary self-selection behaviour by the adults of the aphidophagous ladybeetle Harmonia axyridis (Coleoptera: Coccinellidae). Journal of Animal Ecology, 73: 478486.CrossRefGoogle Scholar
Sobal, J. and Bisogni, C.A. 2009. Constructing food choice decisions. Annals of Behavioral Medicine, 38: 3746.CrossRefGoogle ScholarPubMed
Sutherland, A.M. and Parrella, M.P. 2009. Mycophagy in Coccinellidae: review and synthesis. Biological Control, 51: 284293.CrossRefGoogle Scholar
Trakimas, G., Krams, R., Krama, T., Kortet, R., Haque, S., Luoto, S., et al. 2019. Ecological stoichiometry: a link between developmental speed and physiological stress in an omnivorous insect. Frontiers in Behavioral Neuroscience, 13: 42. https://doi.org/10.3389/fnbeh.2019.00042.CrossRefGoogle Scholar
Tschanz, B., Bersier, L.F., and Bacher, S. 2007. Functional responses: a question of alternative prey and predator density. Ecology, 88: 13001308.CrossRefGoogle ScholarPubMed
Uiterwaal, S.F. and Delong, J.P. 2018. Multiple factors, including arena size, shape the functional responses of ladybird beetles. Journal of Applied Ecology, 55: 24292438.CrossRefGoogle Scholar
Wegener, G. 1996. Flying insects: model systems in exercise physiology. Experientia, 52: 404412.CrossRefGoogle ScholarPubMed
Wood, W. and Neal, D.T. 2009. The habitual consumer. Journal of Consumer Psychology, 19: 579592.CrossRefGoogle Scholar
Yasuda, H. and Ishikawa, H. 1999. Effects of prey density and spatial distribution on prey consumption of the adult predatory ladybird beetle. Journal of Applied Entomology, 123: 585589.CrossRefGoogle Scholar
Zellner, D.A., Loaiza, S., Gonzalez, Z., Pita, J., Morales, J., Pecora, D., and Wolf, A. 2006. Food selection changes under stress. Physiology & Behavior, 87: 789793.CrossRefGoogle ScholarPubMed