Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T01:05:26.044Z Has data issue: false hasContentIssue false

Effects of release pattern and room ventilation on survival of varroa mites and queens during indoor winter fumigation of honey bee colonies with formic acid

Published online by Cambridge University Press:  02 April 2012

Robyn M. Underwood*
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Canada R3T 2N2
Robert W. Currie
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Canada R3T 2N2
*
1 Corresponding author (e-mail: underwoodrm@yahoo.com).

Abstract

This study examined the effects of indoor fumigation with formic acid on survival of honey bee, Apis mellifera L. (Hymenoptera: Apidae), queens and varroa mites (Varroa destructor Anderson and Trueman (Acari: Varroidae)). A relationship between cumulative formic acid concentration and varroa mite mortality was established for colonies subjected to high-concentration fumigation while held indoors at 2–4 °C during winter. We also examined the effects of the formic acid release pattern and room ventilation rate on queen loss and treatment efficacy during fumigation. Two experiments were conducted in a wintering building. In both experiments, room air had higher formic acid concentrations than hive air. In experiment 1, 50% and 95% of mites were killed when exposed to in-hive concentration × time combinations of 49 ppm × days (CT50 product) and 111 ppm × days (CT95 product), respectively. No queen loss was observed under either the increasing-concentration or constant high concentration fumigation pattern. In experiment 2, 33% of queens were lost when minimum ventilation was used with room air concentrations of 57 ± 8 ppm (mean ± SE), whereas no queens were lost in controls or colonies exposed to room air concentrations of 27 ± 8 ppm with variable ventilation. Queen loss was associated with peak in-hive formic acid concentrations >20 ppm, but not with CT product, suggesting that queens are affected by acute rather than chronic exposure to formic acid. Formic acid fumigation significantly reduced the mean abundance of mites under both minimum- and variable-ventilation treatments.

Résumé

Nous examinons les effets de la fumigation à l’intérieur avec de l’acide formique sur la survie des reines d’abeilles Apis mellifera L. (Hymenoptera : Apidae) et de Varroa destructor Anderson et Trueman (Acari : Varroidae). Lors de fumigations à forte concentration de colonies maintenues à l’intérieur en hiver à 2–4 °C, il existe une relation entre la concentration cumulative d’acide formique et la mortalité des acariens varroas. Nous avons aussi examiné durant les fumigations les effets du patron de libération de l’acide formique et du taux de ventilation de la pièce sur la perte des reines et l’efficacité du traitement. Nous avons procédé à deux expériences dans un bâtiment où les abeilles passent l’hiver. Dans les deux expériences, l’air de la pièce contenait une plus forte concentration d’acide formique que l’air des ruches. Dans l’expérience 1, 50 % des V. destructor sont morts lors d’une exposition dans les ruches à une combinaison de concentration × temps d’exposition de 49 ppm × jours (produit CT50); à 111 ppm × jours (produit CT95), la mortalité est de 95 %. Nous n’observons aucun perte de reine, ni avec un pattern de fumigation de concentration croissante, ni avec un de concentration élevée constante. Dans l’expérience 2, 33 % des reines sont mortes avec une ventilation minimale et une concentration dans l’air de la pièce de 57 ± 8 (ET) ppm, alors qu’il n’y a aucune perte de reine dans les conditions témoins, ni dans les colonies exposées à l’air de la pièce contenant en moyenne une concentration de 27 ± 8 ppm avec une ventilation variable. La perte des reines est associée à des mesures d’acide formique atteignant des pics supérieurs à 20 ppm, mais non à des produits CT; cela laisse croire que les reines sont affectées par la toxicité aiguë plutôt que chronique de l’acide formique. Les fumigations avec l’acide formique réduisent significativement l’abondance moyenne des acariens varroas, tant dans les conditions de ventilation minimales que variables.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D.L., and Trueman, J.W.H. 2000. Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental and Applied Acarology, 24: 165189.CrossRefGoogle ScholarPubMed
Bahreini, R., Tahmasebi, G.H., Nowzari, J., and Talebi, M. 2004. A study of the efficacy of formic acid in controlling Varroa destructor and its correlation with temperature in Iran. Journal of Apicultural Research, 43: 158161.Google Scholar
Bogdanov, S., Charrière, J.-D., Imdorf, A., Kilchenmann, V., and Fluri, P. 2002. Determination of residues in honey after treatments with formic and oxalic acid under field conditions. Apidologie, 33: 399409.CrossRefGoogle Scholar
Bond, E.J. 1984. Manual of fumigation for insect control. Plant Production and Protection Paper 54, Food and Agriculture Organization, Rome, Italy.Google Scholar
Burgett, M., and Burikam, I. 1985. Number of adult honey bees (Hymenoptera: Apidae) occupying a comb: a standard for estimating colony populations. Journal of Economic Entomology, 78: 11541156.Google Scholar
Calderone, N.W., and Nasr, M.E. 1999. Evaluation of formic acid formulation for the fall control of Varroa jacobsoni (Acari: Varroidae) in colonies of the honey bee Apis mellifera (Hymenoptera: Apidae) in a temperate climate. Journal of Economic Entomology, 92: 526533.CrossRefGoogle Scholar
Charrière, J., and Imdorf, A. 2002. Oxalic acid treatment by trickling against Varroa destructor: recommendations for use in central Europe and under temperate climate conditions. Bee World, 83: 5160.Google Scholar
Clinch, P.G. 1970. Effect on honey bees of combs exposed to vapour from dichlorvos slow-release strips. New Zealand Journal of Agricultural Research, 13: 448452.Google Scholar
Crane, E. 1979. Honey: a comprehensive survey. Morrison and Gibb Ltd., London, United Kingdom.Google Scholar
Currie, R.W., and Gatien, P. 2006. Timing acaricide treatments to prevent Varroa destructor (Acari:Varroidae) from causing economic damage to honey bee colonies. The Canadian Entomologist, 138: 238252.Google Scholar
Dietz, A., and Hermann, H.R. 1988. Biology, detection and control of Varroa jacobsoni: a parasitic mite on honey bees. Lei-Act Publishers, Commerce, Georgia, United States of America.Google Scholar
Feldlaufer, M.F., Pettis, J.S., Kochansky, J.P., and Shimanuki, H. 1997. A gel formulation of formic acid for the control of parasitic mites of honey bees. American Bee Journal, 137: 661663.Google Scholar
Gatien, P., and Currie, R.W. 1995. Effectiveness of control measures for the varroa mite. In Proceedings of the Farm Support Adjustment Measures II Research Symposium, Edmonton, Alberta, 15 January 1992. The Canadian Honey Council, Calgary, Alberta. pp. 38.Google Scholar
Gatien, P., and Currie, R.W. 2003. Timing of acaricide treatments for control of low-level populations of Varroa destructor (Acari: Varroidae) and implications for colony performance of honey bees. The Canadian Entomologist, 135: 749763.Google Scholar
Greatti, M., Milani, N., and Nazzi, F. 1992. Reinfestation of an acaricide-treated apiary by Varroa jacobsoni Oud. Experimental and Applied Acarology, 16: 279286.CrossRefGoogle Scholar
Gruszka, J. 1998. Beekeeping in Western Canada. Alberta Agriculture, Food and Rural Development, Edmonton, Alberta.CrossRefGoogle Scholar
Harris, J.L. 1980. A population model and its application to the study of honey bee colonies. M.Sc. thesis, University of Manitoba, Winnipeg, Manitoba.Google Scholar
Hill, B.D., Richards, K.W., and Schaalje, C.B. 1984. Use of dichlorvos resin strips to reduce parasitism of alfalfa leafcutter bee (Hymenoptera: Megachilidae) cocoons during incubation. Journal of Economic Entomology, 77: 13071312.CrossRefGoogle Scholar
Imdorf, A., Charrière, J.-D., Kilchenmann, V., Bogdanov, S., and Fluri, P. 2003. Alternative strategy in central Europe for the control of Varroa destructor in honey bee colonies. Apiacta, 38: 258285.Google Scholar
Korpela, S., Aarhus, A., Fries, I., and Hansen, H. 1992. Varroa jacobsoni Oud. in cold climates: population growth, winter mortality and influence on the survival of honey bee colonies. Journal of Apicultural Research, 31: 157164.CrossRefGoogle Scholar
Lindberg, C.M., Melathopoulos, A.P., and Winston, M.L. 2000. Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite. Journal of Economic Entomology, 93: 189198.Google Scholar
Liu, T.P., Chu, L.T.Y., and Sporns, P. 1993. Formic acid residues in honey in relation to application rate and timing of formic acid for control of tracheal mites, Acarapis woodi (Rennie). American Bee Journal, 133: 719721.Google Scholar
Martin, S.J. 2001. The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modeling approach. Journal of Applied Ecology, 38: 10821093.Google Scholar
Maul, V., Petersen, N., and Wissen, W. 1980. Feldversuche zur Varroatosetherapie mit Ameisensäure. Allgemeine deutsche Imkerzeitung, 14: 155157.Google Scholar
Melathopoulos, A.P., Winston, M.L., Whittington, R., Smith, T., Lindberg, C., Mukai, A., and Moore, M. 2000. Comparative laboratory toxicity of neem pesticides to honey bees (Hymenoptera: Apidae), their mite parasites Varroa jacobsoni (Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae), and brood pathogens Paenibacillus larvae and Ascophaera apis. Journal of Economic Entomology, 93: 199209.Google Scholar
Milani, N. 1999. The resistance of Varroa jacobsoni Oud. to acaricides. Apidologie, 30: 229234.Google Scholar
Ostermann, D.J., and Currie, R.W. 2004. Effect of formic acid formulations on honey bee (Hymenoptera: Apidae) colonies and influence of colony and ambient conditions on formic acid concentration in the hive. Journal of Economic Entomology, 97: 15001508.CrossRefGoogle ScholarPubMed
Przewozny, A., Zautke, F., and Bienefeld, K. 2003. Tierquälerei oder sinnvolles Medikament? Deutsche Bienen Journal, 11: 1112.Google Scholar
Ritter, W. 1993. Chemical control: options and problems. In Living with Varroa: Proceedings of an International Bee Research Association Symposium, London, United Kingdom. Edited by Matheson, A.. International Bee Research Association, Cardiff, United Kingdom. pp. 1724.Google Scholar
Ritter, W., and Ruttner, F. 1980. Neue Wege in der Behandlung der Varroatose: Ameisensäure. Allgemeine deutsche Imkerzeitung, 14: 151155.Google Scholar
Rosenkranz, P., and Engels, W. 1985. Consequences of drone brood removal, an effective biological control technique in the reduction of varroatosis damage in honey bee colonies. Allgemeine deutsche Imkerzeitung, 19: 265271.Google Scholar
Sammataro, D., Gerson, U., and Needham, G. 2000. Parasitic mites of honey bees: life history, implications and impact. Annual Review of Entomology, 45: 519548.CrossRefGoogle ScholarPubMed
SAS Institute Inc. 1999. SAS/STAT® user's guide. SAS Institute Inc., Cary, North Carolina.Google Scholar
Sholberg, P.L., and Gaunce, A.P. 1996. Fumigation of high moisture seed with acetic acid to control storage mold. Canadian Journal of Plant Science, 76: 551555.CrossRefGoogle Scholar
Skinner, J.A., Parkman, J.P., and Studer, M.D. 2001. Evaluation of honey bee miticides, including temporal and thermal effects on formic acid gel vapours, in the central south-eastern USA. Journal of Apicultural Research, 40: 8189.CrossRefGoogle Scholar
Smith, E.P. 2002. BACI design. In Encyclopedia of environmetrics. Edited by El-Shaarawi, A.H. and Piegorsch, W.W.. John Wiley & Sons, Ltd., Chichester, United Kingdom. pp. 141148.Google Scholar
Snedecor, G.W., and Cochran, W.G. 1980. Statistical methods. 7th ed. The Iowa State University Press, Ames, Iowa.Google Scholar
Stewart-Oaten, A., Murdoch, W.W., and Parker, K.R. 1986. Environmental impact assessment: “pseudo-replication” in time? Ecology, 67: 929940.CrossRefGoogle Scholar
Talpay, B. 1989. Contents of honey — formic acid (formate). Deutsche Lebensmittel-Rundschau, 85: 143147.Google Scholar
Underwood, R.M., and Currie, R.W. 2003. The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor (Acari: Varroidae), a parasite of Apis mellifera (Hymenoptera: Apidae). Experimental and Applied Acarology, 29: 303313.Google Scholar
Underwood, R.M., and Currie, R.W. 2004. Indoor winter fumigation of Apis mellifera (Hymenoptera: Apidae) colonies infested with Varroa destructor (Acari: Varroidae) with formic acid is a potential control alternative in northern climates. Journal of Economic Entomology, 97: 177186.Google Scholar
Underwood, R.M., and Currie, R.W. 2005. Effect of concentration and exposure time on treatment efficacy against varroa mites (Acari: Varroidae) during indoor winter fumigation of honey bees (Hymenoptera: Apidae) with formic acid. Journal of Economic Entomology, 98: 18021809.CrossRefGoogle ScholarPubMed
VonPosern, H. 1988. Stopping varroa's victory march. Part II. American Bee Journal, 128: 425428.Google Scholar
Wissen, W., and Maul, V. 1981. Tests of procedures of application of formic acid in the control of varroa disease. Apiacta, 61: 6670.Google Scholar