Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-24T07:31:58.234Z Has data issue: false hasContentIssue false

Effects of gypsy moth establishment and dominance in native caterpillar communities of northern oak forests

Published online by Cambridge University Press:  07 September 2012

Laura L. Timms*
Affiliation:
Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, Ontario, Canada M5S 3B3
Sandy M. Smith
Affiliation:
Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, Ontario, Canada M5S 3B3
*
1Corresponding author (e-mail: laura.timms@utoronto.ca).

Abstract

Little research has addressed the impacts of invasive-species establishment on native forest insect communities. Such information is lacking even for gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), the most thoroughly studied invasive forest insect. We investigated the ecological impacts of gypsy moth on native species at sites in north-central Ontario, Canada, with and without significant histories of gypsy moth defoliation over a 2-year period. Patterns in native forest caterpillar communities are described using measures of species diversity and multivariate analysis. We documented a transition from low-level to dominant gypsy moth populations. Sites with different gypsy moth outbreak histories exhibited differences in rank-abundance distributions and dominance structures in the first year of the study; by the second year, gypsy moth was dominant at sites of both types irrespective of their previous defoliation history. Contrary to our predictions, we found that gypsy moth outbreak history had no significant effects on native caterpillar community diversity or structure. However, sites with currently high gypsy moth abundance demonstrated significant shifts in late-season caterpillar community structure. Our results suggest that observed community differences were due to the presence of a highly abundant folivore, and not to permanent shifts in the native community because of the introduction of an invasive species.

Résumé

On a consacré peu de recherches aux impacts de l—établissement des espèces envahissantes sur les communautés d'insectes forestiers indigènes. Il n'existe pas d'informations de cette nature même pour la spongieuse, Lymantra dispar (L.) (Lepidoptera : Erebidae), l'espèce d'insecte forestier envahissant la mieux étudiée. Nous examinons les impacts écologiques de la spongieuse sur les espèces indigènes à des sites du centre nord de l'Ontario, Canada, avec ou sans histoire de défoliation significative par la spongieuse au cours d'une période de deux ans. Nous décrivons les patrons dans les communautés de chenilles forestières indigènes à l'aide de mesures de diversité et d'analyses multidimensionnelles. Nous avons observé une transition des populations de spongieuses de densité faible à dominante. Les sites qui ont connu des déroulements différents de l—épidémie possèdent des distributions de rangs d'abondances et des structures de dominance différentes durant la première année de l—étude; dés la seconde année, la spongieuse domine dans les deux types de sites, quelle que soit leur histoire antérieure de défoliation. Contrairement à nos prédictions, l'histoire antérieure de l—épidémie des spongieuses n'a aucun effet significatif sur la diversité ni sur la structure de la communauté de chenilles indigènes. Cependant, les sites qui ont présentement de fortes abondances de spongieuses accusent des changements significatifs de structure des communautés de chenilles de fin de saison. Nos résultats laissent croire que les différences observées dans les communautés sont dues à la présence d'un folivore extrêmement abondant et non à des changements permanents de la communauté indigène à cause de l'introduction d'une espèce envahissante.

[Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnaud, P.H. Jr, 1978. A host-parasite catalog of North American Tachinidae (Diptera). USDA Miscellaneous Publication No. 1319.Google Scholar
Barber, N.A. Marquis, R.J. Tori, W.P. 2008. Invasive prey impacts the abundance and distribution of native predators. Ecology, 89: 26782683. doi: 10.1890/08-0395.1.Google Scholar
Berryman, A.A. 1996. What causes population cycles in forest Lepidoptera?. Trends in Ecology and Evolution, 11: 2832. doi: 10.1016/0169-5347(96)81066-4.CrossRefGoogle ScholarPubMed
Boettner, G.H. Elkinton, J.S. Boettner, C.J. 2000. Effects of a biological control introduction on three nontarget native species of Saturniid moths. Conservation Biology, 14: 17981806. doi: 10.1046/j.1523-1739.2000.99193.x.CrossRefGoogle ScholarPubMed
Boulton, T.J. Otvos, I.S. Halwas, K.L. Rohlfs, D.A. 2007. Recovery of nontarget Lepidoptera on Vancouver Island, Canada: one and four years after a gypsy moth eradication program. Environmental Toxicology and Chemistry, 26: 738748. doi: 10.1897/06-079R1.1.Google Scholar
Buddle, C.M. Beguin, J. Bolduc, E. Mercado, A. Sackett, T.E. Selby, D., and et al.  2005. The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. The Canadian Entomologist. 137: 120127 doi: 10.4039/n04-040.Google Scholar
Butler, L. Kondo, V. 1993. Impact of Dimilin on non-target Lepidoptera: results of an operational gypsy moth suppression program at Coopers Rock State Forest, West Virginia. West Virginia University Agriculture and Forestry Experiment Station Bulletin No. 710.CrossRefGoogle Scholar
Butler, L. Strazanac, J. 2000. Macrolepidopteran larvae sampled by tree bands in temperate mesic and xeric forests in eastern United States. Proceedings of the Entomological Society of Washington, 102: 188197.Google Scholar
Butler, L. Chrislip, G. Kondo, V. 1995. Canopy arthropods at Fernow Experimental Forest in West Virginia's Allegheny Mountain Section: II. Macrolepidopterous larvae collected on foliage and under burlap bands. West Virginia University Agriculture and Forestry Experiment Station Bulletin No. 713.Google Scholar
Butler, L. Chrislip, G.A. Kondo, V.A. Townsend, E.A. 1997. Effect of diflubenzuron on nontarget canopy arthropods in closed, deciduous watersheds in a central Appalachian forest. Journal of Economic Entomology, 90: 784794.CrossRefGoogle Scholar
Colwell, R.K. 2005. EstimateS: statistical estimation of species richness and shared species from samples. User's guide and application. Version 7.5 [online]. Available from www.purl.oclc.org/estimates [accessed 12 July 2010].Google Scholar
Colwell, R.K. Mao, C.X. Chang, J. 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, 85: 27172727. doi: 10.1890/03-0557.Google Scholar
Dankert, B.A. Herms, D.A. Parry, D. Scriber, J.M. Haas, L.A. 1997. Mediation of interspecific competition between folivores through defoliation-induced changes in host quality?. In Ecology and evolution of plant-feeding insects in natural and man-made environments. Edited by Raman, A.. Backhuys Publishers, Leiden, The Netherlands. pp. 7188.Google Scholar
Davidson, C.B. Gottschalk, K.W. Johnson, J.E. 1999. Tree mortality following defoliation by the European gypsy moth (Lymantria dispar L.) in the United States: a review. Forest Science, 45: 7484.Google Scholar
Denno, R.F. Peterson, M.A. Gratton, C. Cheng, J. Langellotto, G.A. Huberty, A.F. Finke, D.L. 1995. Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annual Review of Entomology, 40: 297331. doi: 10.1146/annurev.en.40.010195.001501.CrossRefGoogle Scholar
Ecological Stratification, Working Group. 1995. A national ecological framework for Canada. Agriculture and Agri-Food Canada/Environment Canada. Ontario Ottawa.Google Scholar
Ellis, J.A. Walter, A.D. Tooker, J.F. Ginzel, M.D. Reagel, P.F. Lacey, E.S., et al.  2005. Conservation biological control in urban landscapes: manipulating parasitoids of bagworm (Lepidoptera: Psychidae) with flowering forbs. Biological Control. 34: 99107. doi: 10.1016/j.biocontrol.2005.03.020.CrossRefGoogle Scholar
Evans, H.J. Jones, C.G. Smith, B.E. Rowlinson, D.T. Francis, M.W. 1997. Forest health conditions in the Northeast region of Ontario, 1996. Great Lakes Forestry Centre, Canadian Forest Service, Sault-Ste-Marie, Ontario.Google Scholar
Eveleigh, E.S. McCann, K.S. McCarthy, P.C. Pollock, S.J. Lucarotti, C.J. Morin, B., et al.  2007. Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proceedings of the National Academy of Sciences, 04: 1697616981. doi: 10.1073/pnas.0704301104.Google Scholar
Faeth, S.H. 1987. Community structure and folivorous insect outbreaks: the roles of vertical and horizontal interactions. In Insect outbreaks. Edited by Barbosa, P. Schultz, J.C.. San Diego, California, Academic Press, Inc. pp. 135171.CrossRefGoogle Scholar
Forkner, R.E. Marquis, R.J. Lill, J.T. Le Corff, J. 2008. Timing is everything? Phenological synchrony and population variability in leaf-chewing herbivores of Quercus. Ecological Entomology, 33: 276285. doi: 10.1111/j.1365-2311.2007.00976.x.CrossRefGoogle Scholar
Gale, G.A. DeCecco, J.A. Marshall, M.R. McClain, W.R. Cooper, R.J. 2001. Effects of gypsy moth defoliation on forest birds: an assessment using breeding bird census data. Journal of Field Ornithology, 72: 291304.Google Scholar
Gandhi, K.J.K. Herms, D.A. 2010. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biological Invasions, 12: 389405. doi: 10.1007/s10530-009-9627-9.Google Scholar
Godfray, H.C.J. 1993. Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, New Jersey.Google Scholar
Gotelli, N. Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379391. doi: 10.1046/j.1461-0248.2001.00230.x.CrossRefGoogle Scholar
Hajek, A.E. Strazanac, J.S. Wheeler, M.M. Vermeylen, F.M. Butler, L. 2004. Persistence of the fungal pathogen Entomophaga maimaiga and its impact on native Lymantriidae. Biological Control, 30: 466473. doi: 10.1016/j.biocontrol.2004.02.005.Google Scholar
Haukioja, E. Niemelä, P. 1979. Birch leaves as a resource for herbivores: seasonal occurrence of increased resistance in foliage after mechanical damage of adjacent leaves. Oecologia, 39: 151159. doi: 10.1007/BF00348065.CrossRefGoogle ScholarPubMed
Havill, N.P. Raffa, K.F. 1999. Effects of elicitation treatment and genotypic variation on induced resistance in Populus: impacts on gypsy moth (Lepidoptera: Lymantriidae) development and feeding behaviour. Oecologia, 120: 295303. doi: 10.1007/s004420050861.Google Scholar
Hilt, N. Fiedler, K. 2005. Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Diversity and Distributions, 11: 387398. doi: 10.1111/j.1366-9516.2005.00167.x.Google Scholar
Hilt, N. Brehm, G. Fiedler, K. 2006. Diversity and ensemble composition of geometrid moths along a successional gradient in the Ecuadorian Andes. Journal of Tropical Ecology, 22: 155166. doi: 10.1017/S0266467405003056.CrossRefGoogle Scholar
Hopkin, A.A. Scarr, T. 2003. Status of important forest pests in Ontario 2003 [online]. Available from www.cfs.nrcan.gc.ca/index/foresthealth [accessed 12 July 2010].Google Scholar
Hunter, A.F. 1991. Traits that distinguish outbreaking and nonoutbreaking macrolepidoptera feeding on northern hardwood trees. Oikos, 60: 275282. doi: 10.2307/3545068.Google Scholar
Hunter, M.D. 1987. Opposing effects of spring defoliation on late season oak caterpillars. Ecological Entomology, 12: 373382. doi: 10.1111/j.1365-2311.1987.tb01018.x.Google Scholar
Invasive Species Specialist Group. 2009. Global invasive species database [online]. Available from www.issg.org/database [accessed 12 July 2010].Google Scholar
Jedlicka, J. Vandermeer, J. Aviles-Vasquez, K. Barros, O. Perfecto, I. 2004. Gypsy moth defoliation of oak trees and a positive response of red maple and black cherry: an example of an indirect interaction. American Midland Naturalist, 152: 231236. doi: 10.1674/0003-0031(2004)152[0231:GMDOOT]2.0.CO;2.CrossRefGoogle Scholar
Jeffries, J.M. Marquis, R.J. Forkner, R.E. 2006. Forest age influences oak insect herbivore community structure, richness, and density. Ecological Applications, 16: 901912. doi: 10.1890/1051-0761(2006)016[0901:FAIOIH]2.0.CO;2.Google Scholar
Kasbohm, J.W. Vaughan, M.R. Kraus, J.G. 1994. Behavioral responses of black bears to gypsy moth infestation in Shenandoah National Park, Virginia. International Conference on Bear Research and Management, 9: 461470.Google Scholar
Kellogg, S.K. Fink, L.S. Brower, L.P. 2003. Parasitism of native luna moths, Actias luna (L.) (Lepidoptera: Saturniidae) by the introduced Compsilura concinnata (Meigen) (Diptera: Tachinidae) in central Virginia, and their hyperparasitism by trigonalid wasps (Hymenoptera: Trigonalidae). Environmental Entomology, 32: 10191027. doi: 10.1603/0046-225X-32.5.1019.Google Scholar
Krombein, K.V. Hurd, P.D. Jr Smith, D.R. Burks, B.D. 1979. Catalog of Hymenoptera in America north of Mexico. Volume 1: Symphyta and Apocrita (Parasitica). Smithsonian Institution Press, Washington, D.C.Google Scholar
Kuussaari, M. Bommarco, R. Heikkine, R.K. Helm, A. Krauss, J. Lindborg, R., et al.  2009. Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 24: 564571. doi: 10.1016/j.tree.2009.04.011.Google Scholar
Lafontaine, J.D. Schmidt, B.C. 2010. Annotated check list of the Noctuoidea (Insecta, Lepidoptera) of North America north of Mexcio. ZooKeys, 40: 1239. doi: 10.3897/zookeys.40.414.Google Scholar
Legendre, P. Gallagher, E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129: 271280. doi: 10.1007/s004420100716.Google Scholar
Legendre, P. Legendre, L. 1998. Numerical ecology. 2nd English ed. Elsevier, Amsterdam, The Netherlands.Google Scholar
Lindstrom, M.J. Bates, D.M. 1990. Nonlinear mixed effects models for repeated measures data. Biometrics, 46: 673687. doi: 10.2307/2532087.Google Scholar
Lovett, G.M. Canham, C.D. Arthur, M.A. Weathers, K.C. Fitzhugh, R.D. 2006. Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience, 56: 395405. doi: 10.1641/0006-3568(2006)056[0395:FERTEP]2.0.CO;2.Google Scholar
Mason, R.R. 1987. Nonoutbreak species of forest Lepidoptera. In Insect outbreaks. Edited by Barbosa, P. Schultz, J.C.. San Diego, California, Academic Press, Inc. pp. 3157.Google Scholar
McArdle, B.H. Anderson, M.J. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology, 82: 290297. doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2.Google Scholar
Minchin, P.R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 69: 89107. doi: 10.1007/BF00038690.Google Scholar
Muzika, R.-M. Liebhold, A.M. 1999. Changes in radial increment of host and nonhost tree species with gypsy moth defoliation. Canadian Journal of Forest Research, 29: 13651373. doi: 10.1139/x99-098.Google Scholar
Nealis, V.G. Roden, P.M. Ortiz, D.A. 1999. Natural mortality of the gypsy moth along a gradient of infestation. The Canadian Entomologist, 131: 507519. doi: 10.4039/Ent131507-4.Google Scholar
Nealis, V.G. Carter, N. Kenis, M. Quednau, F.W. van Frankenhuyzen, K. 2002. Lymantria dispar (L.), gypsy moth (Lepidoptera: Lymantriidae). In Biological control programmes in Canada, 1981–2000. Edited by Mason, P.G. Huber, J.T.. New York, CABI Publishing. pp. 159168.Google Scholar
Neuvonen, S. Hanhimäki, S. Suomela, J. Haukioja, E. 1988. Early season damage to birch foliage affects the performance of a late season herbivore. Journal of Applied Entomology, 105: 182189. doi: 10.1111/j.1439-0418.1988.tb00174.x.Google Scholar
Oksanen, J. 2007. Multivariate analysis of ecological communities in R: a vegan tutorial [online]. Available from www.cc.oulu.fi/~jarioksa/softhelp/vegan.html [accessed 12 July 2010].Google Scholar
Oksanen, J. Kindt, R. Legendre, P. O'Hara, R.B. 2006. Vegan: community ecology package. R package version 1.8-2 [online]. Available from www.cran.r-project.org [accessed 12 July 2010].Google Scholar
Opler, P.A. Lotts, K. Naberhaus, T. 2009. Butterflies and moths of North America [online]. Available from www.butterfliesandmoths.org/ [accessed 12 July 2010].Google Scholar
Pinheiro, J. Bates, D. DebRoy, S. Sarkar, D. 2007. R package. Version 3.1-86 [online]. Available from www.R-project.org [accessed 12 July 2010].Google Scholar
R Development Core Team. 2007. R: a language and environment for statistical computing [online]. Available from www.R-project.org [accessed 12 July 2010].Google Scholar
Raimondo, S. Strazanac, J.S. Butler, L. 2004. Comparison of sampling techniques used in studying Lepidoptera population dynamics. Environmental Entomology, 33: 418425. doi: 10.1603/0046-225X-33.2.418.CrossRefGoogle Scholar
Rastall, K. Kondo, V. Strazanac, J.S. Butler, L. 2003. Lethal effects of biological insecticide applications on nontarget lepidopterans in two Appalachian forests. Environmental Entomology, 32: 13641369. doi: 10.1603/0046-225X-32.6.1364.Google Scholar
Redman, A.M. Scriber, J.M. 2000. Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens, and parasitoids. Oecologia, 125: 218228. doi: 10.1007/s004420000444.Google Scholar
Reynolds, L.V. Ayres, M.P. Siccama, T.G. Holmes, R.T. 2007. Climatic effects on caterpillar fluctuations in northern hardwood forests. Canadian Journal of Forest Research, 37: 481491. doi: 10.1139/x06-211.Google Scholar
Rieske, L.K. Buss, L.J. 2001. Effects of gypsy moth suppression tactics on litter- and ground-dwelling arthropods in the central hardwood forests of the Cumberland Plateau. Forest Ecology and Management, 149: 181195. doi: 10.1016/S0378-1127(00)00552-1.Google Scholar
Rose, A.H. Lindquist, O.H. 1982. Insects of eastern hardwood trees. Forestry Technical Report 29, Canadian Forest Service, Department of the Environment. Ottawa, Ontario.Google Scholar
Roy, D.B. Rothery, P. Moss, D. Pollard, E. Thomas, J.A. 2001. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. Journal of Animal Ecology, 70: 201217. doi: 10.1046/j.1365-2656.2001.00480.x.CrossRefGoogle Scholar
Sample, B.E. Butler, L. Zivkovich, C. Whitmore, R.C. Reardon, R. 1996. Effects of Bacillus thuringiensis Berliner var. kurstaki and defoliation by the gypsy moth [Lymantria dispar (L.) (Lepidoptera: Lymantriidae)] on native arthropods in West Virginia. The Canadian Entomologist, 128: 573592. doi: 10.4039/Ent128573-4.Google Scholar
Savilaakso, S. Koivisto, J. Veteli, T.O. Roininen, H. 2009. Microclimate and tree community linked to differences in lepidopteran larval communities between forest fragments and continuous forest. Diversity and Distributions, 15: 356365. doi: 10.1111/j.1472-4642.2008.00542.x.CrossRefGoogle Scholar
Schaffner, J.V. Griswold, C.L. 1934. Macrolepidoptera and their parasites reared from field collections in the northeastern part of the United States. USDA Miscellaneous Publication No. 188.Google Scholar
Schowalter, C.R. Whitmore, R.C. 2002. The effect of gypsy moth defoliation on cavity-nesting bird communities. Forest Science, 48: 273281.Google Scholar
Schultz, J.C. Baldwin, I.T. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science (Washington, D.C.), 217: 149151. doi: 10.1126/science.217.4555.149.CrossRefGoogle ScholarPubMed
Schweitzer, D.F. 2004. Gypsy moth (Lymantria dispar): impacts and options for biodiversity-oriented land managers [online]. Available from www.natureserve.org/library/gypsyMothReport.pdf [accessed 12 July 2010].Google Scholar
Schweitzer, D.F. Minno, M.C. Wagner, D.L. 2011. Rare, declining, and poorly known butterflies and moths (Lepidoptera) of forests and woodlands in the eastern United States. U.S. Forest Service, Forest Technology Enterprise Team, FHTET-2011-01. In press.Google Scholar
Scriber, J.M. 2004. Non-target impacts of forest defoliator management options: decision for no spraying may have worse impacts on non-target Lepidoptera than Bacillus thuringiensis insecticides. Journal of Insect Conservation, 8: 241261. doi: 10.1023/B:JICO.0000045822.15349.cf.Google Scholar
Scriber, J.M. Weir, K. Parry, D. Deering, J. 1999. Using hybrid and backcross larvae of Papilio canadensis and Papilio glaucus to detect induced phytochemical resistance in hybrid poplar trees experimentally defoliated by gypsy moths. Entomologia Experimentalis et Applicata, 91: 233236. doi: 10.1046/j.1570-7458.1999.00488.x.Google Scholar
Selfridge, J.A. Parry, D. Boettner, G.H. 2007. Parasitism of barrens buck moth Hemileuca maia Drury in early and late successional pine barrens habitats. Journal of the Lepidopterists Society, 61: 213221.Google Scholar
Sharov, A.A. Leonard, D. Liebhold, A.M. Roberts, E.A. Dickerson, W. 2002. Slow the spread: a national program to contain the gypsy moth. Journal of Forestry, 100: 3035.Google Scholar
Simons, E.E. Reardon, R.C. Ticehurst, M. 1979. Selected parasites and hyperparasites of the gypsy moth, with keys to adults and immatures. USDA Agriculture Handbook No. 540.Google Scholar
Smith, H.R. Lautenschlager, R.A. 1978. Predators of the gypsy moth. USDA Agriculture Handbook No. 534.Google Scholar
Spitzer, K. Rejmanek, M. Soldan, T. 1984. The fecundity and long-term variability in abundance of noctuid moths (Lepidoptera, Noctuidae). Oecologia, 62: 9193. doi: 10.1007/BF00377379.Google Scholar
Summerville, K.S. Crist, T.O. 2008. Structure and conservation of lepidopteran communities in managed forests of North America: a review. The Canadian Entomologist, 140: 475494. doi: 10.4039/n07-LS06.Google Scholar
Summerville, K.S. Bonte, A.C. Fox, L.C. 2007. Short-term temporal effects on community structure of Lepidoptera in restored and remnant tallgrass prairies. Restoration Ecology, 15: 179188. doi: 10.1111/j.1526-100X.2006.00182.x.Google Scholar
Timms, L.L. 2010. What happens after establishment? The indirect impacts of the gypsy moth on native forest caterpillar communities. Ph.D. thesis. University of Toronto, Toronto, Ontario.Google Scholar
Timms, L.L. Walker, S.C. Smith, S.M. 2011. Establishment and dominance of an introduced herbivore has limited impact on native host-parasitoid food webs. Biological Invasions. In press.Google Scholar
Troubridge, J.D. Lafontaine, J.T. 2004. The moths of Canada [online]. Available from www.cbif.gc.ca/spp_pages/misc_moths/phps/mothindex_e.php [accessed 12 July 2010].Google Scholar
Wagner, D.L. 2005. Caterpillars of eastern North America. Princeton University Press, Princeton, New Jersey.Google Scholar
Wagner, D.L. Van Driesche, R.G. 2010. Threats posed to rare or endangered insects by invasions of nonnative species. Annual Review of Entomology, 55: 547568. doi: 10.1146/annurev-ento-112408-085516.Google Scholar
Wagner, D.L. Peacock, J.W. Carter, J.L. Talley, S.E. 1995. Spring caterpillar fauna of oak and blueberry in a Virginia deciduous forest. Annals of the Entomological Society of America, 88: 416426.CrossRefGoogle Scholar
Wagner, D.L. Peacock, J.W. Carter, J.L. Talley, S.E. 1996. Field assessment of Bacillus thuringiensis on nontarget Lepidoptera. Environmental Entomology, 25: 14441454.Google Scholar
Wagner, D.L. Giles, V. Reardon, R.C., and McManus, M.L. 1997. Caterpillars of eastern forests. USDA Forest Service FHTET-96-34.Google Scholar
Weseloh, R.M. 1987. Accuracy of gypsy moth (Lepidoptera: Lymantriidae) population estimates based on counts of larvae in artificial resting sites. Annals of the Entomological Society of America, 80: 361366.CrossRefGoogle Scholar
White, E.M. Wilson, J.C. Clarke, A.R. 2006. Biotic indirect effects: a neglected concept in invasion biology. Diversity and Distributions, 12: 443455. doi: 10.1111/j.1366-9516.2006.00265.x.Google Scholar
Wold, E.N. Marquis, R.J. 1997. Induced defense in white oak: effects on herbivores and consequences for the plant. Ecology, 78: 13561369. doi: 10.1890/0012-9658(1997)078[1356:IDIWOE]2.0.CO;2.Google Scholar
Work, T.T. McCullough, D.G. 2000. Lepidopteran communities in two forest ecosystems during the first gypsy moth outbreaks in northern Michigan. Environmental Entomology, 29: 884900. doi: 10.1603/0046-225X-29.5.884.Google Scholar
Zuur, A.F. Ieno, E.N. Walker, N.J. Saveliev, A.A. Smith, G.M. 2009. Mixed effects models and extensions in ecology with R. Springer Science+Business Media. LLC, New York.Google Scholar