Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T07:32:51.579Z Has data issue: false hasContentIssue false

Effects of fire return rates on traversability of lodgepole pine forests for mountain pine beetle (Coleoptera: Scolytidae) and the use of patch metrics to estimate traversability

Published online by Cambridge University Press:  02 April 2012

Huge J. Barclay*
Affiliation:
Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
Chao Li
Affiliation:
Northern Forestry Centre, 5320–122 Street, Edmonton, Alberta, Canada T6H 3S5
Laura Benson
Affiliation:
Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
Steve Taylor
Affiliation:
Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
Terry Shore
Affiliation:
Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
*
1 Corresponding author (e-mail: hbarclay@nrcan.gc.ca).

Abstract

Monte-Carlo simulation was used to examine the effects of fire return rates on the equilibrium age structure of a one-million-hectare lodgepole pine forest (Pinus contorta var. latifolia Engelm. ex S. Wats.; Pinaceae) and yielded a mosaic of ages over the one million hectares for each fire regime modelled. These mosaics were used to generate mosaics of susceptibility to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins, 1902) attack. This susceptibility was related to the age distribution to calculate the mean susceptibility of the forest. Susceptibility maps were produced for two timber supply areas in British Columbia, as well as for the whole of B.C. In addition, we defined a quality, called traversability, that describes the ability of a beetle population to disperse across a landscape according to defined rules of susceptibility and maximum distance for dispersal through unsuitable habitat. Using each of 40 combinations of susceptibility classifications and dispersal limits, the landscape was categorized as traversable or non-traversable. This represents the suitability of a landscape to the unimpeded spread of an incipient beetle population. It was found that (i) long fire cycles yield an age structure highly susceptible to beetle attack; (ii) fire suppression reduces the frequency of fires and yields an age structure highly susceptible to beetle attack; and (iii) harvesting one age class reduces the mean susceptibility to MPB attack, and this reduction decreases with increasing harvest age and increasing fire cycle length. When fires were limited in size to less than 100 ha, the area was always traversable. For larger fires, traversability declined, and for the largest fires (up to one million hectares), the area was often not traversable. Harvesting reduced the mean susceptibility and traversability, often substantially. Traversability was calculated for the whole of B.C. in blocks of about one million hectares using B.C. Ministry of Forests and Range inventory data for the year 2000. The area most traversable was the area around Tweedsmuir Park and the Lakes Timber Supply Area, where most of the present outbreak of MPB is centred. FRAGSTATS patch metrics were calculated for each of the simulations and were related to traversability using discriminant analysis. This analysis was then applied to the B.C. inventory; the concordance was high, with 93.3% of conditions being correctly classified.

Résumé

Une simulation de Monte Carlo nous a servi à examiner les effets de la fréquence des feux sur la structure d'âges à l'équilibre d'une forêt d'un million d'hectares de pins vrillés (Pinus contorta var. latifolia ex S. Wats.; Pinaceae) et a fourni une mosaïque des âges sur le million d'hectares pour chacun des régimes de feux modélisés. Ces mosaïques permettent de générer des mosaïques de vulnérabilité aux attaques du dendroctone du pin ponderosa (MPB) (Dendroctonus ponderosae Hopkins, 1902). Cette vulnérabilité associée à la distribution des âges sert à calculer la vulnérabilité moyenne de la forêt. Nous avons produit des cartes de vulnérabilité pour deux régions de production de bois en Colombie-Britannique, ainsi que pour l'ensemble de la province. De plus, nous définissons une caractéristique, la pénétrabilité, qui décrit la possibilité qu'a une population de coléoptères de se disperser dans un paysage d'après des règles définies de vulnérabilité et de la distance maximale de la dispersion à travers un habitat défavorable. À l'aide de 40 combinaisons de catégories de vulnérabilité et de limites à la dispersion, le paysage peut être caractérisé comme pénétrable ou non pénétrable. Cela représente la possibilité de dispersion sans encombre d'une nouvelle population de coléoptères dans un paysage donné. Nous avons observé que (i) les longs cycles de feux entraînent des structures d'âges qui sont très vulnérables à l'attaque des coléoptères, (ii) la suppression des feux réduit la fréquence des feux et permet une structure d'âges très vulnérable aux coléoptères et (iii) la récolte d'une classe d'âge réduit la vulnérabilité moyenne aux attaques de MPB et cette réduction diminue en fonction de l'accroissement de l'âge de la classe récoltée et de la longueur des cycles de feux. Quand les feux sont limités à des surfaces de moins de 100 ha, la région est toujours pénétrable. La pénétrabilité décline lors les feux plus importants et elle devient souvent nulle lors des feux les plus étendus (jusqu'à 1 million d'hectares). La récolte réduit la vulnérabilité moyenne et la pénétrabilité, souvent de façon substantielle. Nous avons calculé la pénétrabilité pour l'ensemble de la C.-B. en parcelles d'environ 1 million d'hectares à l'aide des données d'inventaire de l'an 2000 du Ministère des forêts et des prairies (Ministry of Forests and Range). La région la plus facilement pénétrable est celle des environs du parc Tweedsmuir et de la région de production de bois des Lacs, où l'épidémie actuelle de MPB est concentrée. Nous avons calculé les métriques des parcelles par FRAGSTATS pour chacune des simulations et les avons reliées à la pénétrabilité par analyse discriminante. Nous avons appliqué le modèle à l'inventaire de la C.-B. et obtenu une concordance élevée puisque 93,3 % des situations sont classées correctement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, G.W. 1999. A stochastic characterization of the natural disturbance regime of the boreal mixedwood forest with implications for sustainable forest management. Canadian Journal of Forest Research, 29: 424433.Google Scholar
Barclay, H.J., Safranyik, L., and Linton, D. 1998. Trapping mountain pine beetles Dendroctonus ponderosae (Coleoptera: Scolytidae) using pheromone-baited traps: effects of trapping distance. Journal of the Entomological Society of British Columbia, 95: 2531.Google Scholar
Baskent, E.Z., and Jordan, G.A. 1995. Characterizing spatial structure of forest landscapes. Canadian Journal of Forest Research, 25: 18301849.CrossRefGoogle Scholar
Cerezke, H.F. 1989. Mountain pine beetle aggregation semiochemical use in Alberta and Saskatchewan, 1983–1987. In Proceedings of a Symposium on the Management of Lodgepole Pine to Minimize Losses to the Mountain Pine Beetle, Kalispell, Montana, 12–14 July 1988. Compiled by Amman, G.D.. General Technical Report INT-262, USDA Forest Service, Intermountain Research Station, Ogden, Utah. p. 113.Google Scholar
Cole, W.E., and Amman, G.D. 1969. Mountain pine beetle infestations in relation to lodgepole pine diameters. Research Note INT-95, Intermountain Range and Experiment Station, USDA Forest Service, Ogden, Utah.Google Scholar
Definiens Inc. 2004. eCognition: a user's guide. Definiens Inc., Boulder, Colorado.Google Scholar
Dymond, C., Wulder, M., Shore, T., Nelson, T., Boots, B., and Riel, B. 2005. Evaluation of risk assessment of mountain pine beetle infestations using GPS survey points. Western Journal of Applied Forestry. In press.Google Scholar
Ecoregions Working Group. 1989. Ecoclimatic regions of Canada. Ecological land classification series. No. 23. Canadian Wildlife Service, Environment Canada, Ottawa, Ontario.Google Scholar
Elkie, P., Rempel, R., and Carr, A. 1999. Patch Analyst user's manual. TM-002. Ontario Ministry of Natural Resources, Northwest Science and Technology, Thunder Bay, Ontario.Google Scholar
Environmental Systems Research Institute, Inc. 2000. ArcView®. Version 3.2a [computer program]. Environmental Systems Research Institute, Inc., Redlands, California.Google Scholar
Fall, A., Fortin, M.-J., Kneeshaw, D.D., Yamasaki, S.H., Messier, C., Bouthillier, L., and Smyth, C. 2004. Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests. Canadian Journal of Forest Research, 34: 310322.CrossRefGoogle Scholar
Furniss, M.M., and Furniss, R.L. 1972. Scolytids (Coleoptera) on snowfields above timberline in Oregon and Washington. The Canadian Entomologist, 104: 14711478.Google Scholar
Goudie, J.W., Mitchell, K.J., and Polsson, K.R. 1990. Managed stand and product yield tables for interior lodgepole pine: initial density and precommercial thinning. Available from B.C. Ministry of Forests, Research Branch, Victoria, BC V8W 3E7.Google Scholar
Haines-Young, R., and Chopping, M. 1996. Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Progress in Physical Geography, 20: 418445.CrossRefGoogle Scholar
Hawkes, B.C. 1979. Fire history and fuel appraisal study of Kananaskis Provincial Park, Alberta. M.Sc. thesis, University of Alberta, Edmonton, Alberta.Google Scholar
Hopping, G.R., and Beale, G. 1948. The relation of diameter of lodgepole pine to incidence of attack by the bark beetle Dendroctonus monticolae Hopkins. Forestry Chronicle, 24: 141145.CrossRefGoogle Scholar
Hughes, J. 1998. Modeling the effect of landscape pattern on mountain pine beetles. M.Sc. thesis, School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia.Google Scholar
Li, C., and Barclay, H.J. 2001. Fire disturbance patterns and forest age structure. Natural Resource Modeling, 14: 495521.CrossRefGoogle Scholar
Logan, J.A., White, P., Bentz, B.J., and Powell, J.A. 1998. Model analysis of spatial patterns in mountain pine beetle outbreaks. Theoretical Population Biology, 53: 236255.CrossRefGoogle ScholarPubMed
McGarigal, K., and Marks, B. 1995. FRAGSTATS: a spatial pattern analysis program for quantifying landscape structure. General Technical Report PNW-GTR-351, US Department of Agriculture, USDA Forest Service, Northwest Research Station, Portland, Oregon.CrossRefGoogle Scholar
Polymenopoulos, A.D., and Long, G. 1990. Estimation and evaluation methods for population growth models with spatial diffusion: dynamics of mountain pine beetle. Ecological Modelling, 51: 97121.CrossRefGoogle Scholar
Safranyik, L. 1978. Effects of climate and weather on mountain pine beetle populations. In Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests. Proceedings of a Symposium, Pullman, Washington, 25–27 April 1978. Edited by Berryman, A.A., Amman, G.D., and Stark, R.W.. University of Idaho, Moscow, Idaho. pp. 7784.Google Scholar
Safranyik, L. 2004. Mountain pine beetle epidemiology in lodgepole pine. In Proceedings of the Mountain Pine Beetle Symposium: Challenges and Solutions, Kelown, British Columbia, 30–31 October 2003. Edited by Shore, T.L., Brooks, J.E., and Stone, J.E.. Information Report BC-X-399, Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia. pp. 3340.Google Scholar
Safranyik, L., Silversides, R., McMullen, L.H., and Linton, D.A. 1989. An empirical approach to modelling the dispersal of the mountain pine beetle (Dendroctonus ponderosae Hopk.) (Col., Scolytidae) in relation to sources of attraction, wind direction and speed. Journal of Applied Entomology, 108: 498511.Google Scholar
Shore, T.L., and Safranyik, L. 1992. Susceptibility and risk rating systems for the mountain pine beetle in lodgepole pine stands. Information Report BC-X-336, Forestry Canada, Victoria, British Columbia.Google Scholar
Shore, T.L., Safranyik, L., and Lemieux, J.P. 2000. Susceptibility of lodgepole pine stands to the mountain pine beetle: testing of a rating system. Canadian Journal of Forest Research, 30: 4449.CrossRefGoogle Scholar
Stauffer, D., and Aharony, A. 1992. Introduction to percolation theory. Taylor and Francis, London.Google Scholar
Taylor, S.W., and Carroll, A.L. 2004. Disturbance, forest age, and mountain pine beetle outbreak dynamics in BC: a historical perspective. In Proceedings of the Mountain Pine Beetle Symposium: Challenges and Solutions, Kelowna, British Columbia, 30–31 October 2003. Edited by Shore, T.L., Brooks, J.E., and Stone, J.E.. Information Report BC-X-399, Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia.Google Scholar
Turchin, P., and Thoeny, W.T. 1993. Quantifying dispersal of southern pine beetles with mark–recapture experiments and a diffusion model. Ecological Applications, 3: 187198.Google Scholar
Van Wagner, C.E. 1978. Age-class distribution and the forest fire cycle. Canadian Journal of Forest Research, 8: 220227.CrossRefGoogle Scholar
Wilson, B. 2004. An overview of the mountain pine beetle initiative. In Proceedings of the Mountain Pine Beetle Symposium: Challenges and Solutions, Kelowna, British Columbia, 30–31 October 2003. Edited by Shore, T.L., Brooks, J.E., and Stone, J.. Information Report BC-X 399, Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia. pp. 39.Google Scholar