Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T15:24:22.468Z Has data issue: false hasContentIssue false

EFFECTS OF DIFFERENT GROWTH FACTORS ON THE POTATO APHID, MACROSIPHUM EUPHORBIAE (APHIDIDAE: HOMOPTERA), FED ON AN ARTIFICIAL DIET1

Published online by Cambridge University Press:  31 May 2012

S. S. Chawla
Affiliation:
Département de Biologié, Faculté des Sciences, Université Laval, Québec
J.-M. Perron
Affiliation:
Département de Biologié, Faculté des Sciences, Université Laval, Québec
M. Cloutier
Affiliation:
Département de Biologié, Faculté des Sciences, Université Laval, Québec

Abstract

Macrosiphum euphorbiae (Thomas) was fed on artificial diets containing coumarin, phloridzin, kinetin, kinetin riboside, royal jelly, ALAR-85, and chlorogenic acid. Incorporation of chlorogenic acid in the artificial diet improved the growth of the potato aphid which was studied up to 17 generations. Coumarin and kinetin riboside at higher concentrations inhibited growth whereas phloridzin prolonged the developmental period of aphids in the second and third generations. The inhibitory effect of ALAR-85 and kinetin became apparent in the third and second generation nymphs, respectively, which did not reach the adult stage. Addition of royal jelly neither enhanced growth nor fecundity of M. euphorbiae.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akey, D. H. and Beck, S. D.. 1971. Continuous rearing of the pea aphid, Acyrthosiphon pisum, on a holidic diet. Ann. ent. Soc. Am. 64: 353356.CrossRefGoogle Scholar
Akey, D. H. and Beck, S. D.. 1972. Nutrition of the pea aphid, Acyrthosiphon pisum: Requirements for trace metals, sulphur, and cholesterol. J. Insect Physiol. 18: 19011914.CrossRefGoogle Scholar
Auclair, J. L. and Cartier, J. J.. 1963. Pea aphid: Rearing on a chemically defined diet. Science 142: 10681069.CrossRefGoogle ScholarPubMed
Auclair, J. L. and Raulston, J. R.. 1966. Feeding of Lygus hesperus (Hemiptera: Miridae) on a chemically defined diet. Ann. ent. Soc. Am. 59: 10161017.CrossRefGoogle Scholar
Cartier, J. J. and Morin, S. G.. 1965. L'élevage du puceron de la pomme de terre, Macrosiphum euphorbiae (Thos.) (Homoptera: Aphididae) sur diète synthétique. Annls Soc. ent. Québ. 10: 6979.Google Scholar
Dadd, R. H. and Krieger, D. L.. 1967. Continuous rearing of aphids of the Aphis fabae complex on sterile synthetic diet. J. econ. Ent. 60: 15121514.CrossRefGoogle Scholar
Dadd, R. H. and Krieger, D. L.. 1968. Dietary amino acid requirements of the aphid, Myzus persicae. J. Insect Physiol. 14: 741764.CrossRefGoogle Scholar
Dadd, R. H. and Mittler, T. E.. 1966. Permanent culture of an aphid on a totally synthetic diet. Experientia 22: 832833.CrossRefGoogle ScholarPubMed
Ehrhardt, P. 1968. Die Wirkung verschiedener Spurenelemente auf Wachstum, reproduktion und symbionten von Neomyzus circumflexus Buckt. (Aphididae: Homoptera: Insecta) bei künstlicher Ernährung. Z. vergl. Physiol. 58: 4775.CrossRefGoogle Scholar
Gorz, H. J., Haskins, F. A., and Manglitz, G. R.. 1972. Effect of coumarin and related compounds on blister beetle feeding in sweetclover. J. econ. Ent. 65: 16321635.CrossRefGoogle Scholar
Grace, J. T., Hakala, M. T., Hall, R. H., and Blakeslee, J.. 1967. N6-substituted adenine derivatives as growth inhibitors of human leukemic myeloblasts and S-180 cells. Proc. Am. Ass. Cancer Res. 8: 23.Google Scholar
Hans, H. and Thorsteinson, A. J.. 1961. The influence of physical factors and host plant odour on the induction and termination of dispersal flights in Sitona cylindricollis Fahr. Entomologia exp. appl. 4: 165177.Google Scholar
Howe, W. L. and Gorz, H. J.. 1960. Feeding preferences of the cowpea aphid among species of Melilotus. Ann. ent. Soc. Am. 53: 696697.CrossRefGoogle Scholar
Kato, M. and Yamada, H.. 19631964. Chlorogenic acid as a growth factor of silkworm. Revue du ver à soie 15–16: 8592.Google Scholar
Kato, M. and Yamada, H.. 1966. Silkworm requires 3,4-dihydroxybenzene structure of chlorogenic acid as a growth factor. Life Sci. 5: 717722.CrossRefGoogle Scholar
Kuc, J., Henze, R. E., Ullstrup, A. J., and Quackenbush, F. W.. 1956. Chlorogenic and caffeic acid as fungistatic agents. Produced by potatoes in response to inoculation with Helminthosporium carbonum. J. Am chem. Soc. 78: 31233125.CrossRefGoogle Scholar
Mittler, T. E. and Dadd, R. H.. 1962. Artificial feeding and rearing of the aphid, Myzus persicae (Sulzer), on a completely defined synthetic diet. Nature, Lond. 195: 404.CrossRefGoogle Scholar
Nault, L. R. and Styer, W. E.. 1972. Effects of sinigrin on host selection by aphids. Entomologia expl. appl. 15: 423437.CrossRefGoogle Scholar
Schaefers, G. A. 1972. The role of nutrition in alary polymorphism among the Aphididae — an overview. Search Agriculture Entomol. Rep. N.Y. agric. Exp. Stn, No. 2. 8 pp.Google Scholar
Srivastava, P. N. and Auclair, J. L.. 1971. An improved chemically defined diet for the pea aphid, Acyrthosiphon pisum. Ann. ent. Soc. Am. 64: 474478.CrossRefGoogle Scholar
Stoll, A., Renz, J., and Brack, A.. 1950. Antibacterial substances. VI. Echinacoside, a glucoside from the roots of Echinacea augustifolia (D.C.). Helv. chim. Acta 33: 18771893.CrossRefGoogle Scholar
Wooley, J. G., Murphy, M. K., Bond, H. W., and Perrine, T. D.. 1952. The effect of certain chemical compounds on the multiplication of T2 bacteriophage. J. Immunol. 68: 523530.CrossRefGoogle Scholar
Yamada, H. and Kato, M.. 1966. Chlorogenic acid as an indispensable component of the synthetic diet for the silkworm. Proc. Jap. Acad. 42: 399403.CrossRefGoogle Scholar