Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-04T02:43:06.418Z Has data issue: false hasContentIssue false

Dropping behaviour in Aulacorthum solani (Hemiptera: Aphididae) following attack by Aphidus ervi (Hymenoptera: Braconidae): are sticky stem bands a useful integrated pest management method?

Published online by Cambridge University Press:  10 July 2012

David R. Gillespie*
Affiliation:
Agriculture and Agri-Food Canada Research Centre, Agassiz, PO Box 1000, 6947 #7 Highway, Agassiz, British Columbia, Canada V0 M 1A0
Susanna Acheampong
Affiliation:
Agriculture and Agri-Food Canada Research Centre, Agassiz, PO Box 1000, 6947 #7 Highway, Agassiz, British Columbia, Canada V0 M 1A0
*
1Corresponding author (e-mail: dave.gillespie@agr.gc.ca).

Abstract

We studied the dropping behaviour of the foxglove aphid, Aulacorthum solani (Kaltenbach) (Hemiptera: Aphididae), in response to disturbance by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae). We banded plant stems with sticky tape to prevent aphids from returning to the plants to determine if these would serve as an integrated pest management strategy for A. solani. Stem banding prevented A. solani that had dropped from returning to the plant; but the mortality associated with banding was not necessarily complementary to biological control by A. ervi. Up to 80% of aphids dropped in response to foraging by A. ervi, and thus could be killed on sticky stem bands. The fraction of aphids that dropped to the ground also contained as much as 90% of the parasitoid's offspring. Overall, mortality of aphids on sticky stem bands was not compatible with parasitoids. Although numbers of aphids declined more rapidly in the first 2 weeks of the trial in the presence of stem bands and parasitoids than in the presence of parasitoids alone, the numbers of aphids were identical in the two treatments from the 3rd week onward. Mortality on the stem bands replaced mortality from parasitoids, and reduced recruitment of parasitoids.

Résumé

Nous étudions le comportement par lequel le puceron de la digitale, Aulacorthum solani (Kaltenbach) (Hemiptera: Aphididae), se laisse choir au sol en réaction à la perturbation causée par le parasitoïde Aphidius ervi Haliday (Hymenoptera: Braconidae). Nous avons entouré des tiges de plantes d'une bande de ruban à dos adhésif pour empêcher les pucerons de retourner sur les plantes afin d’évaluer si cette méthode pouvait servir de stratégie de lutte intégrée (IPM) contre A. solani. Les bandes sur les tiges empêchent les A. solani qui se sont laissés tomber de retourner sur le plant; mais la mortalité associée à la pose des bandes n'est pas nécessairement complémentaire au contrôle démographique exercé par Aphidius ervi. Jusqu’à 80% des pucerons se laissent tomber au sol en réaction aux A. ervi en recherche de proies et peuvent ainsi être tués sur les bandes à dos adhésif sur les tiges. La fraction des pucerons qui tombent au sol contient aussi jusqu’à 90% des rejetons des parasitoïdes. En gros, la mortalité des pucerons sur les bandes à dos adhésif sur les tiges n'est pas compatible avec les parasitoïdes. Bien que le nombre de pucerons diminue plus rapidement durant les deux premières semaines de l'essai en la présence conjointe de bandes sur les tiges et de parasitoïdes qu'en présence des parasitoïdes seuls, les nombres de pucerons sont identiques dans les deux situations à partir de la troisième semaine. La mortalité sur les bandes à dos adhésif remplace la mortalité due aux parasitoïdes et réduit le recrutement des parasitoïdes.

Type
Original Article
Copyright
Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, M.C.B.Roitberg, B.D. 1995. Rapid response to intraclonal selection in the pea aphid (Acyrthosiphon pisum). Evolutionary Ecology, 9: 397410.CrossRefGoogle Scholar
Blackman, R.L.Eastop, V.F. 2000. Aphids on the world's crops. An identification guide, 2nd ed. John Wiley & Sons, Chichester, United Kingdom.Google Scholar
Blümel, S. 2004. Biological control of aphids on vegetable crops. In Biocontrol in protected culture. Edited by K.M. Heinz, R.G. van Driesche and M.P. Parrella. Ball Publishing, Greenville, Ohio. pp. 297312.Google Scholar
Chau, A.Mackauer, M. 1997. Dropping of pea aphids from feeding site: a consequence of parasitism by the wasp, Monoctonus paulensis. Entomologia Experimentalis et Applicata, 83: 247252.CrossRefGoogle Scholar
Collins, K.L., Boatman, N.D., Wilcox, A., Holland, J.M., Chaney, K. 2002. Influence of beetle banks on cereal aphid predation in winter wheat. Agriculture, Ecosystems and Environment, 93: 337350.CrossRefGoogle Scholar
Dill, L.M., Fraser, A.H.G., Roitberg, B.D. 1990. The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum. Oecologia, 83: 473478.CrossRefGoogle ScholarPubMed
Henry, L.M., Bannerman, J.A., Gillespie, D.R., Roitberg, B.D. 2010. Predator identity and the nature and strength of food web interactions. Journal of Animal Ecology, 79: 11641171.CrossRefGoogle ScholarPubMed
Henry, L.M., Gillespie, D.R., Roitberg, B.D. 2005. Does mother really know best? Oviposition preference reduces reproductive performance in the generalist parasitoid Aphidius ervi. Entomologia Experimentalis et Applicata, 116: 167174.CrossRefGoogle Scholar
Henry, L.M., Roitberg, B.D., Gillespie, D.R. 2006. Covariance of phenotypically plastic traits induces an adaptive shift in host selection behaviour. Proceedings of the Royal Society B: Biological Sciences, 273: 28932899.CrossRefGoogle ScholarPubMed
Losey, J.E.Denno, R.F. 1998a. Interspecific variation in the escape responses of aphids: effect on risk of predation from foliar-foraging and ground-foraging predators. Oecologia, 115: 245252.CrossRefGoogle ScholarPubMed
Losey, J.E.Denno, R.F. 1998b. The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecological Entomology, 23: 5361.CrossRefGoogle Scholar
McAllister, M., Roitberg, B., Weldon, K. 1990. Adaptive suicide in pea aphids: decisions are cost sensitive. Animal Behaviour, 40: 167175.CrossRefGoogle Scholar
Nault, L.R. 1973. Alarm pheromones help aphids escape predators. Ohio Report, 58: 1617.Google Scholar
Nault, L.R., Montgomery, M.E., Bowers, W.S. 1976. Ant aphid association: role of aphid alarm pheromone. Science, 192: 13491350.CrossRefGoogle ScholarPubMed
Prasad, R.P.Snyder, W.E. 2006. Polyphagy complicates conservation biological control that targets generalist predators. Journal of Applied Ecology, 43: 343352.CrossRefGoogle Scholar
Rabasse, J.M.van Steenis, M.J. 1999. Biological control of aphids. In Integrated pest and disease management in greenhouse crops. Edited by R. Albajes, M.A. Gullino, J.C. van Lenteren and Y. Elad. Kluwer Academic Publishers, Dordrecht. pp. 235243.CrossRefGoogle Scholar
Roitberg, B.D.Myers, J.H. 1978. Adaptation of alarm pheromone responses of the pea aphid Acyrthosiphon pisum (Harris). Canadian Journal of Zoology, 56: 103108.CrossRefGoogle Scholar
Sanchez, J.A., Cánovas, F., Lacasa, A. 2007. Thresholds and management strategies for Aulacorthum solani (Hemiptera: Aphididae) in greenhouse pepper. Journal of Economic Entomology, 100: 123130.CrossRefGoogle ScholarPubMed
Stadler, B., Weisser, W.W., Houston, A.I. 1994. Defence reactions in aphids: the influence of state and future reproductive success. Journal of Animal Ecology, 63: 419430.CrossRefGoogle Scholar
Weisser, W.W. 2000. Metapopulation dynamics in an aphid-parasitoid system. Entomologia Experimentalis et Applicata, 97: 8392.CrossRefGoogle Scholar