Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T07:33:52.376Z Has data issue: false hasContentIssue false

Diet of Dinocras cephalotes and Perla marginata (Plecoptera: Perlidae) in an Apennine stream (northwestern Italy)

Published online by Cambridge University Press:  02 April 2012

Tiziano Bo
Affiliation:
University of Piemonte Orientale, Department of Life and Environmental Science, Via Bellini n. 25, 15100 Alessandria, Italy
Stefano Fenoglio*
Affiliation:
University of Piemonte Orientale, Department of Life and Environmental Science, Via Bellini n. 25, 15100 Alessandria, Italy
Giorgio Malacarne
Affiliation:
University of Piemonte Orientale, Department of Life and Environmental Science, Via Bellini n. 25, 15100 Alessandria, Italy
*
1Corresponding author (e-mail: fenoglio@unipmn.it).

Abstract

The feeding habits of nymphs of Perla marginata (Panzer) and Dinocras cephalotes (Curtis) were investigated in the Rio Orbarina (northwestern Italy). These species are among the largest European carnivorous freshwater invertebrates and they play an important role in the trophic structure of small, fishless Apennine streams. We examined the gut contents of 60 P. marginata and 60 D. cephalotes nymphs to characterize the diets and evaluate possible feeding differences between the species. In both of these predaceous stoneflies, the diet included vegetable detritus, mainly in the smaller instars. Both species showed trophic preferences, since only a few taxa constituted most of the ingested prey items, independently of their availability in the substratum. Interestingly, there were no clear differences in prey selection between nymphs of the two species.

Résumé

Nous avons étudié les habitudes alimentaires des larves de Perla marginata (Panzer) et de Dinocras cephalotes (Curtis) dans le Rio Orbarina (nord-ouest de l'Italie). Ces espèces sont parmi les invertébrés d'eau douce carnivores les plus grands d'Europe et elles jouent un rôle important dans la structure trophique des petits cours d'eau sans poissons des Apennins. Notre travail examine le contenu stomacal de 60 larves de P. marginata et de 60 de D. cephalotes. Le but de l'étude est de définir le régime alimentaire et d'évaluer les différences dans l'alimentation des deux espèces. Le régime alimentaire de ces deux plécoptères prédateurs inclut du détritus végétal, particulièrement chez les plus petits stades. Il existe de nettes préférences trophiques dans le régime des deux espèces: un petit nombre de taxons constitue la majeure partie des proies ingérées, indépendamment de leur disponibilité dans le substrat. Il est intéressant de noter que nous n'avons décelé aucune différence claire dans la sélection des proies entre les larves de ces deux espèces.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J.D. 1995. Stream ecology. Structure and function of running waters. Chapman and Hall, London.Google Scholar
Allan, J.D., and Flecker, A.S. 1988. Prey preference in stoneflies: a comparative analysis of prey vulnerability. Oecologia, 76: 495503.CrossRefGoogle ScholarPubMed
Bo, T., and Fenoglio, S. 2005. Age-related shift in the diet of Perla marginata in a woodland Apenninic creek (NW Italy) (Plecoptera: Perlidae). Entomologia Generalis, 28: 147154.CrossRefGoogle Scholar
Dudgeon, D. 2000. Indiscriminate feeding by a predatory stonefly (Plecoptera: Perlidae) in a tropical Asian stream. Aquatic Insects, 22: 3947.CrossRefGoogle Scholar
Elliott, J.M. 2000. Contrasting diel activity and feeding patterns of four species of carnivorous stoneflies. Ecological Entomology, 25: 2634.CrossRefGoogle Scholar
Elliott, J.M. 2003. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshwater Biology, 48: 15271539.CrossRefGoogle Scholar
Elliott, J.M. 2004. Prey switching in four species of carnivorous stoneflies. Freshwater Biology, 49: 709720.CrossRefGoogle Scholar
Fenoglio, S. 2003. Feeding habits of Anacroneuria nymphs (Plecoptera Perlidae). Bollettino della Società Entomologica Italiana, 135: 1517.Google Scholar
Fenoglio, S., and Bo, T. 2004. Trophic characterization of Dictyogenus alpinus (Pictet, 1842 - Plecoptera, Perlodidae) nymphs in the high Po Valley (NW Italy). Zoologica Baetica, 15: 167174.Google Scholar
Fenoglio, S., Bo, T., Agosta, P., and Malacarne, G. 2005 a. Temporal and spatial patterns of CPOM availability and macroinvertebrate distribution in a low-order Apennine stream. Journal of Freshwater Ecology, 20: 539547.CrossRefGoogle Scholar
Fenoglio, S., Bo, T., and Cucco, M. 2005 b. Winter prey preference of Perlodes microcephalus (Pictet, 1833) (Plecoptera, Perlodidae) nymphs in an Apenninic creek, Northwestern Italy. Entomological News, 116: 245252.Google Scholar
Gessner, M.O., Chauvet, E., and Dobson, M. 1999. A perspective on leaf litter breakdown in streams. Oikos, 85: 377384.CrossRefGoogle Scholar
Ghetti, P.F. 1997. Manuale di applicazione dell'Indice Biotico Esteso. Provincia Autonoma di Trento, Trento, Italy.Google Scholar
Gray, L.J., and Ward, J.V. 1979. Food habits of stream benthos at sites of different food availability. American Midland Naturalist, 102: 157167.CrossRefGoogle Scholar
Ivlev, V.S. 1961. Experimental ecology of the feeding of fishes. Yale University Press, New Haven, Connecticut.Google Scholar
Krebs, J.R. 1978. Optimal foraging: decision rules for predators. In Behavioural ecology: an evolutionary approach. Edited by Krebs, J.R. and Davies, N.B.. Blackwell, Oxford. pp. 2363.Google Scholar
McCormick, P.V. 1991. Lotic protistan herbivore selectivity and its potential impact on benthic algal assemblages. Journal of the North American Benthological Society, 10: 238250.CrossRefGoogle Scholar
Merritt, R.W., and Cummins, K.W. 1996. An introduction to the aquatic insects of North America. 3rd ed. Kendall/Hunt, Dubuque, Iowa.Google Scholar
Monakov, A.K. 2003. Feeding of freshwater invertebrates. Kenobi Productions, Ghent, Belgium.Google Scholar
Sih, A. 1993. Integrative approaches to the study of predation: general thoughts and a case study on sunfish and salamander larvae. Annales Zoologici Fennici, 29: 116.Google Scholar
Stewart, K.W., and Stark, B.P. 2002. Nymphs of North American stonefly genera (Plecoptera). 2nd ed. The Caddis Press, Columbus, Ohio.Google Scholar
Tierno de Figueroa, J.M., and Sanchez-Ortega, A. 1999. Imaginal feeding of certain systellognathan stonefly species (Insecta, Plecoptera). Annales of the Entomological Society of America, 92: 218221.CrossRefGoogle Scholar
Tikkanen, P., Muotka, T., Huhta, A., and Juntunen, A. 1997. The roles of active predator choice and prey vulnerability in determining the diet of predatory stoneflies. Journal of Animal Ecology, 66: 3648.CrossRefGoogle Scholar
Vaught, G.L., and Stewart, K.W. 1974. The life history and ecology of the stonefly Neoperla clymene (Newman) (Plecoptera: Perlidae). Annals of the Entomological Society of America, 67: 167178.CrossRefGoogle Scholar
Wallace, J.B., Benke, A.C., Lingle, A.H., and Parsons, K. 1987. Trophic pathways of macroinvertebrate primary consumers in subtropical blackwater streams. Archiv für Hydrobiologie, 74: 423451.Google Scholar
Wilkinson, L. 1992. SYSTAT. Version 8.0 [computer program]. Systat Inc., Evanston, Illinois.Google Scholar
Wipfli, M.S., and Gregovich, D.P. 2002. Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production. Freshwater Biology, 47: 957969.CrossRefGoogle Scholar
Zanetell, B.A., and Peckarsky, B.L. 1996. Stoneflies as ecological engineers — hungry predators reduce fine sediments in stream beds. Freshwater Biology, 36: 569577.CrossRefGoogle Scholar
Zwick, P. 2000. Phylogenetic system and zoogeography of the Plecoptera. Annual Review of Entomology, 45: 709746.CrossRefGoogle ScholarPubMed