Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-19T12:57:30.038Z Has data issue: false hasContentIssue false

DEVELOPMENT OF TWO RANGELAND GRASSHOPPERS AT CONSTANT TEMPERATURES: DEVELOPMENT THRESHOLDS REVISITED

Published online by Cambridge University Press:  31 May 2012

William P. Kemp
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Bozeman, Montana, USA59717–0001
Brian Dennis
Affiliation:
College of Forestry, Wildlife, and Range Sciences, University of Idaho, Moscow, Idaho, USA83843

Abstract

A study was conducted to examine the relationship between development rate and constant temperatures (14, 21, 24, 27, 33, 36, 40, and 45°C) for the rangeland grasshoppers Melanoplus sanguinipes (F.) and Aulocara elliotti (Thomas). Non-linear regression was used to generate estimates of lower development thresholds. The chosen model provided for a concave-shaped development rate function at temperatures above the lower threshold and required fewer parameters than previous models. Although experimental results suggested that no precise estimates of upper development thresholds could be obtained, previous field studies indicate that preferred body temperatures may be lower than ambient temperatures and probably are related in part to the thermoregulatory abilities of the two species studied. Results will be of interest to insect ecologists and those studying grasshopper biology as well as researchers and pest managers interested in predicting grasshopper development.

Résumé

On a effectué une étude pour examiner la relation entre le taux de développement et la température constante (14, 21, 24, 27, 33, 36, 40, et 45°C) chez les criquets de prairie Melanoplus sanguinipes (F.) et Aulocara elliotti (Thomas). La régression non-linéaire a été utilisée pour générer des estimés des seuils inférieurs de développement. Le modèle retenu permet une fonction de forme concave aux températures dépassant le seuil inférieur et requiert moins de paramètres que les modèles précédents. Quoique les résultats indiquaient qu’il est impossible d’estimer précisément les seuils thermiques supérieurs, des études antérieures sur le terrain indiquent que les températures corporelles préférées sont possiblement inférieures aux températures ambiantes, et probablement dépendantes en partie des capacités de thermorégulation des deux espèces étudiées. Les résultats pourront intéresser les entomologistes, écologistes ou acridologistes, ainsi que les chercheurs et phytoprotectionnistes intéressés aux prévisions du développement des criquets.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environ. Ent. 5: 388396.CrossRefGoogle Scholar
Baskerville, G.L., and Emin, P.. 1969. Rapid estimation of heat accumulation from maximum and minimum temperature. Ecology 50: 514517.CrossRefGoogle Scholar
Bellinger, R.G., and Pienkowski, R.L.. 1987. Developmental polymorphism in the red-legged grasshopper. Melanoplus femurrubrum (DeGeer) (Orthoptera: Acrididae). Environ. Ent. 16: 120125.CrossRefGoogle Scholar
Gage, S.H., Mukerji, H.K., and Randell, R.L.. 1976. A predictive model for seasonal occurrence of three grasshopper species in Saskatchewan (Orthoptera: Acrididae). Can. Ent. 108: 245253.CrossRefGoogle Scholar
Hilbert, D. W., and Logan, J.A.. 1983. Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ. Ent. 12: 15.CrossRefGoogle Scholar
Henry, J.E., and Oma, E.A.. 1975. Sulphonamide antibiotic control of Malameba locustae (King & Taylor) and its effect on grasshoppers. ACRIDA 4: 217226.Google Scholar
Kemp, W.P. 1986. Thermoregulation in three rangeland grasshopper species. Can. Ent. 118: 335343.CrossRefGoogle Scholar
Kemp, W.P. 1987. Predictive phenology modeling in rangeland pest management. pp. 351368.in Capinera, J.L. (Ed.), Integrated Pest Management on Rangeland: A Shortgrass Prairie Perspective. Westview Press, Boulder, CO.Google Scholar
Kemp, W.P., and Onsager, J.A.. 1986. Rangeland grasshoppers (Orthoptera: Acrididae): modelling phenology of natural populations of six species. Environ. Ent. 15: 924930.CrossRefGoogle Scholar
Kemp, W.P., and Sanchez, N.E.. 1987. Differences in post-diapause thermal requirements for eggs of two rangeland grasshoppers. Can. Ent. 119: 653661.CrossRefGoogle Scholar
Parker, J.R. 1930. Some effects of temperature and moisture upon Melanoplus mexicanus mexicanus Saussure and Camnula pellucida Scudder (Orthoptera). Mont. Agric. Exp. Stn. Bull. 223. 132 pp.Google Scholar
Putnam, L.G. 1963. The progress of nymphal development in pest grasshoppers (Acrididae) of western Canada. Can. Ent. 95: 12101216.CrossRefGoogle Scholar
Sharpe, P.J.H., and DeMichel, D.. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Shotwell, R.L. 1941. Life histories and habits of some grasshoppers of economic importance on the great plains. USDA Tech. Bull. 774.Google Scholar
Worner, S.P. 1988. Evaluation of diurnal temperature models and thermal summation in New Zealand. J. econ. Ent. 81: 913.CrossRefGoogle Scholar