Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T19:39:48.364Z Has data issue: false hasContentIssue false

Cyclamen mite (Acari: Tarsonemidae) monitoring in eastern Canada strawberry (Rosaceae) fields and its potential control by the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae)

Published online by Cambridge University Press:  15 January 2020

Stéphanie Patenaude
Affiliation:
Département de phytologie, Centre de recherche et innovation sur les végétaux (CRIV), Université Laval, 2480 Boulevard, Hochelaga, Ville de Québec, Québec, G1V 0A6, Canada
Stéphanie Tellier
Affiliation:
Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec, Direction régionale de la Capitale-Nationale, 1685 boulevard Wilfrid-Hamel, local 140, Ville de Québec, Québec, G1N 3Y7, Canada
Valérie Fournier*
Affiliation:
Département de phytologie, Centre de recherche et innovation sur les végétaux (CRIV), Université Laval, 2480 Boulevard, Hochelaga, Ville de Québec, Québec, G1V 0A6, Canada
*
*Corresponding author. Email: valerie.fournier@fsaa.ulaval.ca

Abstract

The cyclamen mite (Phytonemus pallidus Banks; Acari: Tarsonemidae) has recently become a more important pest in Canadian strawberry (Fragaria × ananassa Duchesne ex Rozier; Rosaceae) production with the withdrawal of the pesticide endosulfan in 2016, yet its phenology under field conditions in Canada is poorly known. Moreover, while its biological control with predatory mites has shown potential, the effectiveness of this method has never been investigated under eastern Canadian field conditions. The objectives of this study were to (1) monitor populations of P. pallidus in strawberries for two consecutive years; and (2) evaluate the in-field potential of the predatory mite Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae). Monitoring cyclamen mite populations in the field revealed new critical knowledge about its phenology in eastern Canada, such as activity until late November. The predator N. cucumeris was able to effectively suppress cyclamen mites the first year, but appeared to be too cold-sensitive to maintain adequate control towards the end of the season. Furthermore, the high rates of predator release required would most likely be cost prohibitive for commercial use. Control of the cyclamen mite in strawberries remains a complex issue that will require further research.

Type
Research Papers
Copyright
© 2020 Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Roselyne Labbé

References

Alford, D. 2007. Pests of fruit crops. A color handbook. Manson Publishing, London, United Kingdom.CrossRefGoogle Scholar
Berglund, R., Svensson, B., and Nilsson, C. 2007. Evaluation of methods to control Phytonemus pallidus and Anthonomus rubi in organic strawberry production. Journal of Applied Entomology, 131: 573578.CrossRefGoogle Scholar
Collier, T. and Van Steenwyk, R. 2004. A critical evaluation of augmentative biological control. Biological Control, 31: 245256.CrossRefGoogle Scholar
Croft, B.A., Pratt, P.D., Koskela, G., and Kaufman, D. 1998. Predation, reproduction, and impact of phytoseiid mites (Acari: Phytoseiidae) on cyclamen mite (Acari: Tarsonemidae) on strawberry. Journal of Economic Entomology, 91: 13071314.CrossRefGoogle Scholar
Easterbrook, M., Fitzgerald, J., Pinch, C., Tooley, J., and Xu, X.M. 2003. Development times and fecundity of three important arthropod pests of strawberry in the United Kingdom. Annals of Applied Biology, 143: 325331.CrossRefGoogle Scholar
Easterbrook, M., Fitzgerald, J., and Solomon, M. 2001. Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae). Experimental & Applied Acarology, 25: 2536.CrossRefGoogle Scholar
Fitzgerald, J., Xu, X., Pepper, N., Easterbrook, M., and Solomon, M. 2008. The spatial and temporal distribution of predatory and phytophagous mites in field-grown strawberry in the UK. Experimental and Applied Acarology, 44: 293306.CrossRefGoogle ScholarPubMed
Fountain, M.T., Harris, A.L., and Cross, J.V. 2010. The use of surfactants to enhance acaricide control of Phytonemus pallidus (Acari: Tarsonemidae) in strawberry. Crop Protection, 29: 12861292.CrossRefGoogle Scholar
Ghazy, N.A., Osakabe, M., Negm, M.W., Schausberger, P., Gotoh, T., and Amano, H. 2016. Phytoseiid mites under environmental stress. Biological Control, 96: 120134.CrossRefGoogle Scholar
Gillespie, D.R. and Ramey, C.A. 1988. Life history and cold storage of Amblyseius cucumeris (Acarina: Phytoseiidae). Journal of the Entomological Society of British Columbia, 85: 7176.Google Scholar
Gobin, B. and Bangels, E. 2008. Field control of strawberry mite Phytonemus pallidus. International Organization for Biological and Integrated Control/West Palearctic Regional Section Bulletin, 39: 97100.Google Scholar
Gouvernement du Canada. 2011. Note de réévaluation REV2011-01, Abandon de l’endusulfan. In Agence de réglementation de la lutte antiparasitaire SC. Edited by Publications Agence de réglementation de la lutte antiparasitaire. Santé Canada, Ottawa, Ontario, Canada.Google Scholar
Hoy, M.A. 2011. Agricultural acarology introduction to integrated mite management. CRC Press, Boca Raton, Florida, United States of America.Google Scholar
Huffaker, C. and Kennett, C. 1953. Developments toward biological control of cyclamen mite on strawberries in California. Journal of Economic Entomology, 46: 802812.CrossRefGoogle Scholar
Jeppson, L.R., Keifer, H.H., and Baker, E.W. 1975. Mites injurious to economic plants. University of California Press, Oakland, California, United States of America.Google Scholar
Jones, T., Shipp, J., Scott-Dupree, C., and Harris, C. 2005. Influence of greenhouse microclimate on Neoseiulus (Ambyseius) cucumeris (Acari: Phytoseiidae) predation on Frankliniella occidentalis (Thysanoptera: Thripdae) and oviposition on greenhouse cucumber. Journal of the Entomological Society of Ontario, 136: 7183.Google Scholar
Labanowska, B.H. 1992. Effectiveness of acaricides in the control of strawberry mite (Phytonemus pallidus ssp. fragariae Zimm.). Fruit Science Reports, 19: 137146.Google Scholar
Labanowska, B.H., Piotrowski, W., Korzeniowski, M., and Cuthbertson, A.G.S. 2015. Control of the strawberry mite, Phytonemus pallidus (Banks) in strawberry plantations by alternative acaricides. Crop Protection, 78: 514.CrossRefGoogle Scholar
Lafontaine, P., Tremblay, J., Bouchard, A., and Martinez, S. 2011. Évaluation de l’efficacité de nouveaux acaricides contre le tarsonème du fraisier (Phytonemus pallidus (Banks)) et de leur impact sur les ennemis naturels. Rapport final réalisé dans le cadre du Programme de soutien à l’innovation horticole (PSIH) du MAPAQ, projet PSIH 09-2-122. Carrefour industriel et expérimental de Lanaudière, L’Assomption, Québec, Canada.Google Scholar
Petrova, V., Cudare, Z., and Steinite, I. 2000. The efficiency of the predatory mite Amblyseius cucumeris (Acari: Phytoseiidae) as a control agent of the strawberry mite Phytonemus pallidus (Acari: Tarsonemidae) on field strawberry. Acta Horticulturae, 567: 675678.Google Scholar
Petrova, V., Samsone, I., Jankevica, L., and Cudare, Z. 2008. The predatory mite Neoseiulus cucumeris for control of the strawberry mite Phytonemus pallidus on strawberry runner plants. In Proceedings of international scientific conference “Sustainable Fruit Growing”. Edited by Dimza, I., Eihe, M., Ikase, L., Lanauskas, J., Libiakova, G., Lopez, M., et al. Latvia State Institute of Fruit-Growing, Dobele, Latvia. Pp. 250256Google Scholar
R Core Team 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Raudonis, L. 2006. The effect of abamectin on strawberry mite Tarsonemus pallidus (Acari: Tarsonemidae) in strawberries. Sodininkystė ir daržininkystė, 25: 153161.Google Scholar
Rhodes, E.M., Liburd, O.E., Kelts, C., Rondon, S.I., and Francis, R.R. 2006. Comparison of single and combination treatments of Phytoseiulus persimilis, Neoseiulus californicus, and acramite (bifenazate) for control of twospotted spider mites in strawberries. Experimental and Applied Acarology, 39: 213225.CrossRefGoogle ScholarPubMed
Rostami, N., Maroufpoor, M., Sadeghi, A., Ghazi, M.M., and Atlıhan, R. 2018. Demographic characteristics and population projection of Phytonemus pallidus fragariae reared on different strawberry cultivars. Experimental and Applied Acarology, 76: 473486.CrossRefGoogle ScholarPubMed
Schaefers, G. 1963. Seasonal densities and control of the cyclamen mite, Steneotarsonemus pallidus (Acarina: Tarsonemidae) on strawberry in New York. Journal of Economic Entomology, 56: 565571.CrossRefGoogle Scholar
Stenseth, C. and Nordby, A. 1976. Damage, and control of the strawberry mite Steneotarsonemus pallidus (Acarina: Tarsonemidae), on strawberries. Journal of Horticultural Science, 51: 4954.CrossRefGoogle Scholar
Svensson, B. 2008. Successful bio-control of the strawberry mite Phytonemus pallidus with the predatory mite Neoseiulus cucumeris in organic outdoor production of strawberries (Fragaria× ananassa Duch.) in Sweden. Acta Horticulturae, 842: 657660.Google Scholar
Tuovinen, T. and Lindqvist, I. 2010. Maintenance of predatory phytoseiid mites for preventive control of strawberry tarsonemid mite Phytonemus pallidus in strawberry plant propagation. Biological Control, 54: 119125.CrossRefGoogle Scholar
Tuovinen, T., Lindqvist, I., Kauppinen, S., and Kivijarvi, P. 2009. Integration of biological mite control and conventional insect control in strawberry. Acta Horticulturae, 842: 661664.CrossRefGoogle Scholar
Zalom, F.G., Thompson, P.B., and Nicola, N. 2009. Cyclamen mite, Phytonemus pallidus (Banks), and other tarsonemid mites in strawberries. Acta Horticulturae, 842: 243246. https://doi.org/10.17660/ActaHortic.2009.842.39.CrossRefGoogle Scholar
Zhang, Z.-Q. 2003. Mites of greenhouses: identification, biology and control. Cabi Publishing, Cambridge, United Kingdom.CrossRefGoogle Scholar
Supplementary material: PDF

Patenaude et al. supplementary material

Figure S1

Download Patenaude et al. supplementary material(PDF)
PDF 524.2 KB