Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-20T04:18:30.920Z Has data issue: false hasContentIssue false

CHANGES IN TRIGLYCERIDE FATTY ACIDS DURING BROOD PRODUCTION OF DOUGLAS-FIR BEETLES (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

W. W. Nijholt
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia
T. S. Sahota
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia

Abstract

The triglyceride fatty acids of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk., were studied 0–21 days during the beetle’s reproductive period. Fatty acids present were identified as myristic (14:0), palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), and linoleic (18:2). Palmitic acid increased from 12 to 23%, while palmitoleic decreased from 15 to 6% of the total triglyceride fatty acids during reproduction. Oleic acid was the predominant fatty acid in both sexes (approx. 65%) and formed 55% of the fatty acid moiety of the egg triglycerides.

Résumé

L’auteur étudia les acides gras à triglycérides du Dendroctone du Sapin de Douglas, Dendroctonus pseudotsugae Hopk. au moment où cet insecte se reproduisait (0–21 jours). Les acides gras étaient méristique (14 = 0), palmitique (16 = 0), palmitoléique (16 = 1), stéarique (18 = 0), oléique (18 = 1) et linoléique (18 = 2). Durant la reproduction, l’acide palmitique augmenta de 12 à 23%, tandis que l’acide palmitoléique diminua de 15 à 6% de la quantité totale d’acides gras à triglycérides. L’acide oléique était la plus abondante chez les deux sexes (environ 65%) et formait 55% de la portion d’acides gras chez les triglycérides des œufs.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amenta, J. S. 1964. A rapid chemical method for quantification of lipids separated by thin-layer chromatography. J. Lipid Res. 5: 270272.CrossRefGoogle ScholarPubMed
Atkins, M. D. 1959. A study of the flight of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). I. Flight preparation and response. Can. Ent. 91: 283291.CrossRefGoogle Scholar
Atkins, M. D. 1969. Lipid loss with flight in the Douglas-fir beetle. Can. Ent. 101: 164165.CrossRefGoogle Scholar
Barlow, J. S. 1964. Fatty acids in some insect and spider fats. Can. J. Biochem. 42: 13651374.CrossRefGoogle ScholarPubMed
Bligh, E. G. and Dyer, W. J.. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911917.CrossRefGoogle ScholarPubMed
Engelmann, F. 1970. The physiology of insect reproduction. Pergamon Press, Oxford.Google Scholar
Gilbert, L. I. 1967 a. Lipid metabolism and functions in insects, pp. 69211. In Beament, J. W. L., Treherne, J. E., and Wigglesworth, V. B. (Eds.), Advances in insect physiology. Academic Press, London and New York.Google Scholar
Gilbert, L. I. 1967 b. Changes in lipid content during the reproductive cycle of Leucophaea maderae and effects of juvenile hormone on lipid metabolism in vitro. Comp. Biochem. Physiol. 21: 237257.CrossRefGoogle Scholar
Horning, M. G., Williams, E. A., and Horning, E. C.. 1960. Separation of tissue cholesterol esters and triglycerides by silicic acid chromatography. J. Lipid Res. 1: 482485.CrossRefGoogle ScholarPubMed
Martin, J. S. 1969. Lipid composition of fat body and its contribution to maturing oocytes in Pyrrhocoris apterus. J. Insect Physiol. 15: 10251045.CrossRefGoogle Scholar
McMullen, L. H. and Atkins, M. D.. 1961. Intraspecific competition as a factor in the natural control of the Douglas-fir beetle. For. Sci. 7: 197203.Google Scholar
Morrison, W. R. and Smith, L. M.. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5: 600608.CrossRefGoogle ScholarPubMed
Nijholt, W. W. 1967. Moisture and fat content during the adult life of ambrosia beetle, Trypodendron lineatum (Oliv.). J. ent. Soc. Br. Columb. 64: 5155.Google Scholar
Nijholt, W. W. 1969. Fat content of the ambrosia beetle, Trypodendron lineatum (Oliv.) during attack and brood production. J. ent. Soc. Br. Columb. 66: 2931.Google Scholar
Penner, K. R. 1970. Metabolism of fatty acids in Ips paraconfusus Lanier (Coleoptera: Scolytidae): in vivo synthesis of fatty acids from acetate-1-14C in freshly emerged females. M.S. Thesis, Simon Fraser University, Burnaby, B.C.Google Scholar
Richeson, J. L., Nation, J. L., and Wilkinson, R. C.. 1971. Fatty acid composition in Ips calligraphus (Coleoptera: Scolytidae) during postembryonic development. Ann. ent. Soc. Am. 64: 251254.CrossRefGoogle Scholar
Sahota, T. S. 1970. Haemolymph and ovarial proteins in the bark beetle, Dendroctonus pseudotsugae in relation to ovarian development. Can. J. Zool. 48: 13071312.CrossRefGoogle ScholarPubMed
Sahota, T. S. 1973. Yolk deposition in Douglas-fir beetle oocytes: possible role of RNA synthesis in the follicular epithelium. J. Insect Physiol. 19: 18871895.CrossRefGoogle Scholar
Sahota, T. S. and Ibaraki, A.. 1973. Yolk deposition in the Douglas-fir beetle, Dendroctonus pseudotsugae (Hopk.): the significance of physiological state of oocytes. Can. J. Zool. 51: 659661.CrossRefGoogle Scholar
Thompson, S. N. and Bennett, R. B.. 1971. Oxidation of fat during flight of male Douglas-fir beetles, Dendroctonus pseudotsugae. J. Insect Physiol. 17: 15551563.CrossRefGoogle Scholar