Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T07:22:23.519Z Has data issue: false hasContentIssue false

AERIAL DISPERSAL BEHAVIOR OF LARVAL BAGWORMS, THYRIDOPTERYX EPHEMERAEFORMIS (LEPIDOPTERA: PSYCHIDAE)1

Published online by Cambridge University Press:  31 May 2012

David L. Cox
Affiliation:
Department of Entomology, University of Kentucky, Lexington, Kentucky, USA 40546–0091
Daniel A. Potter
Affiliation:
Department of Entomology, University of Kentucky, Lexington, Kentucky, USA 40546–0091

Abstract

Seasonal and daily patterns of ballooning, and behavioral processes involved in aerial dispersal of the bagworm, Thyridopteryx ephemeraeformis (Haworth), were studied on Juniperus virginiana L. in Kentucky. The aerial dispersal period began in mid-May 1983 and lasted ca. 1 month. About 75% of dispersing larvae ballooned after making a bag. Settling velocities were determined for larvae with and without bags and trailing varying lengths of silk; a model was then developed that predicts dispersal distance for a particular wind speed and departure height. Most aerial dispersal is probably short-range. The bag reduced potential dispersal distance, but larvae with bags survived ca. 2 days longer than those without bags when exposed to abiotic factors off of a host. Larvae without bags ballooned mostly in morning, whereas 80% of the larvae dispersing with a bag ballooned in the afternoon. These patterns may be related to the diel periodicity of emergence of neonate larvae from old female bags, and the subsequent behavior of 1st instars prior to dispersal. A large proportion of each cohort emigrates regardless of host condition.

Résumé

Les mouvements saisonniers et journaliers et les procédés de comportement engagés dans la dispersion aérienne des pschés, Thyridopteryx ephemeraeformis (Haworth) ont été étudiés sur le Juniperus virginiana L. au Kentucky. La période de la dispersion aérienne a commencé à la mi-mai 1983 et a duré environ 1 mois. Environ 75% des larves dispersées se sont balancées dans l’air suspendues à leur fil de soie après avoir formé une case. On a déterminé les vélocités de transplantation pour les larves avec et sans cases traînant des longueurs variables de soie; on a établi une mesure de référence pour prédire la distance de dispersion selon un vent particulier et une hauteur de départ. La plupart des dispersions aériennes sont probablement de courte durée. La case réduisait la vitesse potentielle de dispersion mais les larves avec cases ont survécu 2 jours de plus que celles sans cases tandis qu’exposées aux facteurs abiotiques en provenance d’un hôte. Les larves sans cases se sont balancées suspendues à leur fil de soie principalement le matin et 80% des larves avec cases l’ont fait l’après-midi. Ces exemples peuvent être liés à la périodicité quotidienne d’émergence des nouvelles larves en provenance des vieilles cases femelles, et au comportement subséquent des larves antérieur à la dispersion. Une large proportion de chaque cohorte émigre indépendamment de la condition de l’hôte.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrewartha, H.G., and Birch, L.C.. 1954. The distribution and abundance of animals. Univ. Chicago Press, Chicago. 782 pp.Google Scholar
Capinera, J.L., and Barbosa, P.. 1976. Dispersal of first instar gypsy moth larvae in relation to population quality. Oecologia 26: 5364.Google Scholar
Cox, D.L. 1985. Dispersal strategies of the bagworm, Thyridopteryx ephemeraeformis (Haworth) in a patchy environment. M.S. thesis, University of Kentucky, Lexington.Google Scholar
Davis, D.R. 1964. Bagworm moths of the Western Hemisphere. Bull. U.S. Natl. Mus. 244: 1233.Google Scholar
Edmonds, R.L. 1980. Airborne dispersal of Douglas-fir tussock moth larvae. Unwelt Bundes Amt Berichte 79: 201211.Google Scholar
Edwards, D.K. 1965. Activity rhythms of lepidopterous defoliators. III. The Douglas-fir tussock moth Orgyia pseudotsugata (McDonnough) (Liparidae). Can. J. Zool. 43: 673681.Google Scholar
Furniss, R.L., and Carolin, V.M.. 1977. Western Forest Insects. U.S. Dep. Agric. For. Serv. Misc. Publ. 1339. 654 pp.Google Scholar
Haseman, L. 1912. The evergreen bagworm. Missouri Agric. Exp. Stn. Bull. 104: 308329.Google Scholar
Jones, F.M. 1927. The mating of the Psychidae (Lepidoptera). Trans. Am. Ent. Soc. 53: 293312.Google Scholar
Kaufman, T. 1968. Observations on the biology and behavior of the evergreen bagworm moth, Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae). Ann. ent. Soc. Am. 61: 3844.Google Scholar
Lance, D., and Barbosa, P.. 1979. Dispersal of larval Lepidoptera with special reference to forest defoliators. The Biologist 61: 90110.Google Scholar
Leonard, D.E. 1970. Feeding rhythms in larvae of the gypsy moth. J. econ. Ent. 63: 11541157.Google Scholar
Leonard, D.E. 1971. Air-borne dispersal of larvae of the gypsy moth and its influence on concepts of control. J. econ. Ent. 63: 638641.Google Scholar
Mason, C.J., and McManus, M.L.. 1981. Larval dispersal of the gypsy moth. pp. 161202in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research toward Integrated Pest Management. U.S. Dep. Agric. Tech. Bull. 1574.Google Scholar
McManus, M.L. 1973. The role of behavior in the dispersal of newly hatched gypsy moth larvae. USDA For. Serv. Res. Pap. NE-267.Google Scholar
McManus, M.L., and Mason, C.J.. 1983. Determination of the settling velocity and its significance to larval dispersal of the gypsy moth (Lepidoptera: Lymantriidae). Environ. Ent. 12: 270272.Google Scholar
Mitchell, T.G. 1979. Dispersal of early instars of Douglas fir tussock moth. Ann. ent. Soc. Am. 72: 291297.Google Scholar
Pedgley, D.E. 1982. Windborne pests and diseases: meteorology of airborne organisms. John Wiley and Sons, New York. 250 pp.Google Scholar
Southwood, T.R.E. 1962. Migration of terrestrial-arthropods in relation to habitat. Biol. Rev. 37: 171214.Google Scholar