Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T05:30:41.987Z Has data issue: false hasContentIssue false

THE WING LENGTH OF SWELTSA REVELSTOKA (PLECOPTERA: CHLOROPERLIDAE)

Published online by Cambridge University Press:  31 May 2012

D.B. Donald
Affiliation:
Canadian Wildlife Service, 9942–108 Street, Edmonton, Alberta T5K 2J5

Abstract

Functional wing length (wing length/head-capsule width) of female Sweltsa revelstoka (Jewett) from streams was measured for 19 sites that have been free of Wisconsin glacial ice for about 15 000 years and possibly longer, and from 23 sites that have been ice free for about 10 000 years. At the former sites brachypterous populations were common and there was a significant negative relationship between functional wing length and elevation, and a positive relationship between functional wing length and stream size. In the area that deglaciated more recently, populations were not or only slightly brachypterous and there was no significant relationship between wing length and elevation or between wing length and stream size. Functional wing length was not related to body size. These analyses indicate that the brachypterous condition is probably genotypic in origin. I suggest that streams were colonized by macropterous forms shortly after deglaciation, and that brachyptery takes several millennia to develop at small, high-elevation streams.

Résumé

La longueur d'ailes fonctionnelle (longueur d'ailes – largeur de la capsule) de la femelle de Sweltsa revelstoka (Jewett) a été mesurée à 19 sites qui ne sont plus couverts par les glaces du Wisconsin depuis 15 000 ans ou plus et à 23 sites n'étant plus couverts de glace depuis environ 10 000 ans. Aux premiers sites, les populations brachyptères étaient communes et aucune relation n'a pu être établie entre l'altitude et la longueur d'ailes fonctionnelle, tandis qu'un lien entre celle-ci et la taille des cours d'eau a été noté. Dans les régions où les glaces ont subsisté plus longtemps, les populations n'étaient que légèrement brachyptères ou ne l'étaient pas du tout et il n'y avait pas de lien entre la longueur d'ailes et l'altitude ou la taille des cours d'eau. La longueur d'ailes fonctionnelle ne variait pas en fonction de la taille du corps. Ces analyses indiquent que le brachyptérisme est probablement un caractère génotypique. Cela conduit à l'hypothèse suivante : les cours d'eau auraient été colonisés par des macroptères peu après la disparition des glaces et le brachyptérisme aurait pris plusieurs millénaires à se développer chez les insectes peuplant des petits cours d'eau situés à une grande altitude.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, J. 1945. Le microptérisme chez les Plécoptères. Rev. Suisse Zool. 52: 395399.Google Scholar
Brinck, P. 1949. Studies on Swedish stoneflies (Plecoptera). Opusc. ent. Suppl. XI. Lund. 250 pp.Google Scholar
Craig, P.C. and McCart, P.J.. 1975. Classification of stream types in Beaufort Sea drainages between Prudhoe Bay, Alaska, and the Mackenzie Delta, N.W.T., Canada. Arctic and Alpine Res. 7: 183198.CrossRefGoogle Scholar
Denton, G.H. and Hughes, T.J.. 1981. The Last Great Ice Sheets. Wiley, NY. 484 pp.Google Scholar
Donald, D.B. and Anderson, R.S.. 1977. Distribution of the stoneflies (Plecoptera) of the Waterton River drainage, Alberta, Canada. Syesis 10: 111120.Google Scholar
Donald, D.B. and Patriquin, D.E.. 1983. The wing length of lentic Capniidae (Plecoptera) and its relationship to elevation and Wisconsin glaciation. Can. Ent. 115: 921926.CrossRefGoogle Scholar
Ford, D.C. 1983. The physiography of the Castleguard Karst and Columbia Icefields area, Alberta, Canada. Arctic and Alpine Res. 15: 427436.CrossRefGoogle Scholar
Gaufin, A.R., Nebeker, A.V., and Sessions, J.. 1966. The stoneflies (Plecoptera) of Utah. Univ. Utah biol. Ser. 14. 93 pp.Google Scholar
Harrison, J.E. 1976. Evolution of a landscape: the quaternary period in Waterton Lakes National Park. Geol. Surv. Can. Misc. Rep. 26. 33 pp.Google Scholar
Hynes, H.B.N. 1941. The taxonomy and ecology of the nymphs of British Plecoptera with notes on the adults and eggs. Trans. R. ent. Soc. Lond. 91: 459557.CrossRefGoogle Scholar
Hynes, H.B.N. 1970. The Ecology of Running Waters. The University of Toronto Press, Toronto. 555 pp.Google Scholar
Hynes, H.B.N. 1976. Biology of Plecoptera. A. Rev. Ent. 21: 135153.CrossRefGoogle Scholar
Jackson, L.E. Jr. 1980. Glacial history and stratigraphy of the Alberta portion of the Kananaskis Lakes map area. Can. J. Earth Sci. 17: 459477.CrossRefGoogle Scholar
Khoo, S.G. 1968. Experimental studies on diapause in stoneflies. I. Nymphs of Capnia bifrons (Newman). Proc. R. ent. Soc. Lond. (A) 43: 4048.Google Scholar
Lillehammer, A. 1976. Norwegian stoneflies. V. Variations in morphological characters compared to differences in ecological factors. Norw. J. Ent. 23: 161172.Google Scholar
Luckman, B.H. and Osborn, G.D.. 1979. Holocene glacier fluctuations in the middle Canadian Rocky Mountains. Quaternary Res. 11: 5277.CrossRefGoogle Scholar
Nebeker, A.V. and Gaufin, A.R.. 1965. The Capnia columbiana complex of North America (Capniidae: Plecoptera). Trans. Am. ent. Soc. 91: 467487.Google Scholar
Nebeker, A.V. and Gaufin, A.R.. 1967. Factors affecting wing length and emergence in the winter stonefly Capnia nana. Ent. News 78: 8592.Google Scholar
Needham, P.R. 1934. Quantitative studies of stream bottom foods. Trans. Am. Fish. Soc. 64: 238247.CrossRefGoogle Scholar
Prest, V.K. 1969. Retreat of Wisconsin and recent ice in North America. Geol. Surv. Can. Map 1257 A.Google Scholar
Ross, H.H. and Yamamoto, T.. 1967. Variation in winter stonefly Allocapnia granulata as indicators of Pleistocene faunal movements. Ann. ent. Soc. Am. 60: 447458.CrossRefGoogle Scholar
Sheldon, A.L. 1972. Comparative ecology of Arcynopteryx and Diura (Plecoptera) in a California stream. Arch. Hydrobiol. 69: 521546.Google Scholar
Snellen, R.K. and Stewart, K.W.. 1979. The life cycle of Perlesta placida (Plecoptera: Perlidae) in an intermittent stream in northern Texas. Ann. ent. Soc. Am. 72: 659666.CrossRefGoogle Scholar
Stalker, A. MacS. 1958. Surficial geology, Fort MacLeod Map Sheet. Geol. Surv. Can. Map 21-1958.Google Scholar
Sweeney, B.W. and Vannote, R.L.. 1978. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444446.CrossRefGoogle ScholarPubMed
Szczytko, S.W. and Stewart, K.W.. 1979. The genus Isoperla (Plecoptera) of western North America; holomorphology and systematics, and a new stonefly genus Cascadoperla. Mem. Am. ent. Soc. (Philadelphia) 32. 120 pp.Google Scholar
Vannote, R.L. and Sweeney, B.W.. 1980. Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. 115: 667675.CrossRefGoogle Scholar