Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-28T15:04:59.484Z Has data issue: false hasContentIssue false

VERTICAL AND TEMPORAL DISTRIBUTION OF COCCINELLIDAE (COLEOPTERA) IN FLIGHT OVER AN AGRICULTURAL LANDSCAPE

Published online by Cambridge University Press:  31 May 2012

Gilles Boiteau
Affiliation:
Potato Research Centre, Agriculture and Agri-Food Canada, P.O. Box 20280, 850 Lincoln Road, Fredericton, New Brunswick, Canada E3B 427
Yves Bousquet
Affiliation:
Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, Canada KIA OC6
W.P.L. Osborn
Affiliation:
Potato Research Centre, Agriculture and Agri-Food Canada, P.O. Box 20280, 850 Lincoln Road, Fredericton, New Brunswick, Canada E3B 427

Abstract

Twenty-one species of Coccinellidae were trapped in flight between 0.8 and 14.3 m from 1992 to 1995 in New Brunswick, Canada. Catches were larger at 0.8 m, with a rapidly decreasing capture rate leading, on average, to more than 50% of the catches at or below 3.8 m every year. The capture rate at 14.3 m was lower than at any of the nine other levels. Hippodamia convergeas Guérin-Méneville flights were distributed close to the ground, with more than 50% of catches at 0.8 m, whereas Mulsantina hudsonica Casey flights were similar at all levels. The strong decreasing gradient of flight as a function of height for Coccinellidae (−0.825) was strongly influenced by that of H. convergens (−1.809) and of Coccinella septempunctata L. (−0.921) and Coccinella trifasciata perplexa Mulsant (−0.715). All other species had a slope of less than −0.5. The temporal distribution of flights was species specific, with maximum activity before the end of June for most, but this was not reflected in the frequency of catches for the entire family, which did not differ throughout the season, although they tended to be lower after mid-August. The weekly vertical flight distribution differed from the average distribution pattern only occasionally, probably during periods of long-distance dispersal. These profiles and known catches from a single trap location can be used to estimate dispersal activity at different heights.

Résumé

Vingt et une espèces de Coccinellidae ont été capturées en vol entre 0,8 et 14,3 m de 1992 à 1995 au Nouveau Brunswick, Canada. Les captures étaient plus élevées à 0,8 m. Par la suite, le taux de capture diminuait rapidement pour en arriver à ce que plus de 50% des captures soient, chaque année, à ou sous 3,8 m. Le taux de capture à 14,3 m était plus bas que celui des neuf autres niveaux. Les vols de Hippodamia convergens Guérin-Méneville étaient distribués près du sol avec plus de 50% des captures à 0,8 m, tandis que ceux de Mulsantina hudsonica Casey étaient semblables à tous les niveaux. Le gradient négatif prononcé pour le vol des coccinelles en fonction de la hauteur (−0,825) est dû en grande partie aux gradients très prononcés de H. convergens (−1,809) et de Coccinella septempunctata L. (−0,921) et Coccinella trifasciata perplexa Mulsant (−0,715). Toutes les autres espèces ont un gradient de moins de −0,5. La distribution temporelle des vols était spécifique à chaque espèce avec le plus haut niveau d’activité avant la fin de Juin pour la plupart; toutefois cela ne se reflète pas dans la fréquence de capture pour la famille, laquelle ne diffère pas pendant la saison, mais est moins élevée après la mi-août. Occasionnellement, la distribution verticale hebdomadaire varie du patron moyen de distribution, probablement durant les moments de dispersion sur de longues distances. Ces profils et captures connues d’un seul piège peuvent être utilisés pour estimer l’activité de dispersion à différentes hauteurs.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boiteau, G. 1983. The arthropod fauna of potato fields: composition and abundance. Agriculture Canada Publication 1983–16E.Google Scholar
Coderre, D., Lucas, É, Gagné, I. 1995. The occurrence of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Canada. The Canadian Entomologist 127: 609–11.CrossRefGoogle Scholar
Ewert, M.A., Chiang, H.C. 1966. Dispersal of three species of Coccinellids in corn fields. The Canadian Entomologist 98: 9991003.CrossRefGoogle Scholar
Flint, M.L., van den Bosch, R. 1981. Introduction to integrated pest management. Plenum Press, New York.CrossRefGoogle Scholar
Fluke, C.L. Jr 1925. Natural enemies of the pea aphid (Illinois pisi Kalt.): their abundance and distribution in Wisconsin. Journal of Economic Entomology 18: 612–16.CrossRefGoogle Scholar
Fluke, C.L. Jr 1929. The known predaceous and parasite enemies of the pea aphid in North America. University of Wisconsin Agriculture Experimental Station Research Bulletin 93.Google Scholar
Frazer, B.D., Raworth, D.A. 1985. Sampling for adult coccinellids and their numerical response to strawberry aphids (Coleoptera: Coccinellidae: Homoptera: Aphididae). The Canadian Entomologist 117: 153–61.CrossRefGoogle Scholar
Gordon, R.D., Vandenberg, N. 1991. Field guide to recently introduced species of Coccinellidae (Coleoptera) in North America, with a revised key to North American genera of Coccinellini. Proceedings of the Entomological Society of Washington 93: 845–64.Google Scholar
Hodek, I. 1973. Biology of Coccinellidae. Dr. W. Junk N.V. Publishers, The Hague, Holland.CrossRefGoogle Scholar
Hodek, I., Honek, A. 1996. Ecology of Coccinellidae. Kluwer Academic Publishers, Dordrecht, The Nether-lands.CrossRefGoogle Scholar
Johnson, C.G. 1969. Migration and dispersal of insects by flight. Methuen & Co. Ltd., London.Google Scholar
Larochelle, A. 1979. Les Coléoptères Coccinellidae du Québec. Cordulia (Supplement) 10: 1111.Google Scholar
Price, P.W. 1997. Insect ecology. John Wiley & Sons, Inc., New York.Google Scholar
Taylor, L.R. 1965. A natural law for the spatial disposition of insects. pp. 396–97 in Freeman, P. (Ed.), Proceedings of the 12th International Congress of Entomology, London, 8–16 July, 1964.Google Scholar
Taylor, L.R. 1974. Insect migrations, flight periodicity and the boundary layer. Journal of Animal Ecology. 43: 225–38.CrossRefGoogle Scholar