Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T02:11:49.890Z Has data issue: false hasContentIssue false

Spectral efficiency and microstructure of the compound eyes of Synanthedon myopaeformis (Lepidoptera: Sesiidae)

Published online by Cambridge University Press:  12 June 2013

C. Eby
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
M. Weis
Affiliation:
Pacific Agri-food Research Centre, Agriculture and Agri-food Canada, 4200 Highway 97, Summerland, British Columbia, Canada V0H 1Z0
M.G.T. Gardiner
Affiliation:
Pacific Agri-food Research Centre, Agriculture and Agri-food Canada, 4200 Highway 97, Summerland, British Columbia, Canada V0H 1Z0
G.J.R. Judd
Affiliation:
Pacific Agri-food Research Centre, Agriculture and Agri-food Canada, 4200 Highway 97, Summerland, British Columbia, Canada V0H 1Z0
G. Gries*
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
*
1Corresponding author (e-mail: gries@sfu.ca).

Abstract

The apple clearwing moth, Synanthedon myopaeformis (Borkhausen) (Lepidoptera: Sesiidae), is a day-flying species that feeds on floral nectar of many plants. In British Columbia, Canada, this invasive moth is often observed feeding on visually conspicuous showy milkweed, Asclepias speciosa Torrey (Apocynaceae). We measured the spectral efficiency of the compound eyes of S. myopaeformis in the context of their capacity to discriminate the measured spectral reflectance from inflorescences of A. speciosa, and conducted histological examination of these eyes to determine whether they possess apposition type ommatidia, as commonly observed in diurnal butterflies. Light micrographs of the compound eyes in S. myopaeformis revealed eucone apposition type ommatidia, which is consistent with the diurnal behaviour of the moth. Electroretinograms on compound eyes revealed they were particularly efficient at absorbing ultraviolet (UV) wavelengths in the 335–370 nm range and green wavelengths in the 495–560 nm range. These results support the conclusion that the compound eyes of S. myopaeformis have the capacity for dichromatic vision based on UV and green photoreceptors. However, spectral reflectance curves obtained from inflorescences and foliage of A. speciosa revealed no evidence of UV reflectance, making it less likely that colour plays a primary role in the attraction of S. myopaeformis to A. speciosa.

Résumé

La sésie du pommier, Synanthedon myopaeformis (Borkhausen) (Lepidoptera: Sesiidae) est une espèce qui vole de jour et se nourrit du nectar floral de plusieurs plantes. En Colombie-Britannique, Canada, ce papillon envahissant est souvent observé en train de se nourrir sur la belle asclépiade, Asclepias speciosa Torrey (Apocynaceae), une plante très voyante. Nous avons mesuré l'efficacité spectrale des yeux composés de S. myopaeformis en ce qui a trait à leur capacité à reconnaître la réflectance spectrale mesurée à partir des inflorescences d’A. speciosa et nous avons procédé à un examen histologique des yeux afin de déterminer s'ils possèdent une vision par apposition, comme on l'observe souvent chez les ommatidies des papillons diurnes. Des micrographies au microscope photonique des yeux composés de S. myopaeformis montrent que les ommatidies sont de type eucone et fonctionnent par apposition, ce qui est compatible avec le comportement diurne de l'insecte. Des électrorétinogrammes des yeux composés montrent qu'ils sont particulièrement efficaces pour absorber les longueurs d'ondes ultraviolettes (UV) dans le domaine spectral de 335–370 nm et les vertes dans celui de 495–560 nm. Ces résultats appuient la conclusion selon laquelle les yeux composés de S. myopaeformis ont la capacité d'une vision dichromatique basée sur des photorécepteurs dans l'UV et le vert. Cependant les courbes de réflectance obtenues des inflorescences et du feuillage d’A. speciosa ne montrent aucun indice de réflectance UV, ce qui rend improbable que la couleur joue un rôle majeur dans l'attirance de S.myopaeformis pour A. speciosa.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, R.A.Papaj, D.R. 1996. Learning of leaf shape by pipevine swallowtail butterflies: a test using artificial leaf models. Journal of Insect Behavior, 9: 961967.CrossRefGoogle Scholar
Andersson, S. 2003. Foraging responses in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae) to floral scents. Chemoecology, 13: 111.CrossRefGoogle Scholar
Ateyyat, M.A.Al-Antary, T.M. 2006. Management and within-tree spatial distribution of the small red-belted clearwing borer, Synanthedon myopaeformis (Borkhausen) (Lepidoptera: Sesiidae), infesting dwarfing apple orchards in southern Jordan. Journal of the Entomological Society of British Columbia, 103: 1117.Google Scholar
Balázs, K., Bujáki, G., Farkas, K. 1996. Incorporation of apple clearwing (Synanthedon myopaeformis Bork.) control into the IPM system of apple. Acta Horticulturae, 422: 134139.CrossRefGoogle Scholar
Balkenius, A., Rosén, W., Kelber, A. 2006. The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. Journal of Comparative Physiology A, 192: 431437.CrossRefGoogle Scholar
Beaton, D.Carter, K. 2006. Apple clearwing moth (Synanthedon myopaeformis) – a new pest in Ontario. Ontario Ministry of Agriculture, Food and Rural Affairs Newsletter. Hort Matters, 6: 1.Google Scholar
Briscoe, A.D.Chittka, L. 2001. The evolution of color vision in insects. Annual Review of Entomology, 46: 471510.CrossRefGoogle ScholarPubMed
Cool, S.J., Crawford, M.L.J., Scheer, I.J. 1970. Tungsten microelectrode preparations for CNS recording. Review of Scientific Instruments, 41: 15061507.CrossRefGoogle Scholar
Dafni, A.Kevan, P.G. 1997. Spatial flower parameters and insect spatial vision. Biological Reviews of the Cambridge Philosophical Society, 72: 239282.CrossRefGoogle Scholar
Dickler, E. 1976. Bionomy and injuriousness of Synanthedon myopaeformis Brkh (Lepidoptera: Aegeriidae), a new pest in close apple plantings. Zeitschrift für Angewandte Entomologie, 82: 259266.CrossRefGoogle Scholar
Eby, C., Gardiner, M.G.T., Gries, R., Judd, G.J.R., Khaskin, G., Gries, G. 2013. Phenylacetaldehyde attracts male and female apple clearwing moths, Synanthedon myopaeformis, to inflorescences of showy milkweed, Asclepias speciosa. Entomologia Experimentalis et Applicata, 147: 8292.CrossRefGoogle Scholar
Eguchi, E., Watanabe, K., Hariyama, T., Yamamoto, K. 1982. A comparison of electrophysiologically determined spectral responses in 35 species of Lepidoptera. Journal of Insect Physiology, 28: 675682.CrossRefGoogle Scholar
Ehnbom, K. 1948. Studies on the central and sympathetic nervous system and some sense organs in the head of neuropteroid insects. Opuscula Entomologica Supplementum, 8: 1162.Google Scholar
Evans, W.G. 1966. Perception of infrared radiation from forest fires by Melanophila acuminata De Geer (Buprestidae: Coleoptera). Ecology, 47: 10611065.CrossRefGoogle Scholar
Giurfa, M., Núñez, J., Chittka, L., Menzel, R. 1995. Colour preferences of flower-naïve honeybees. Journal of Comparative Physiology A, 177: 247259.CrossRefGoogle Scholar
Gogala, M. 1967. The spectral sensitivity of the divided eyes of Ascalaphus macaronius Scop. (Neuroptera: Ascalaphidae). Zeitschrift für Vergleichende Physiologie, 57: 232243.CrossRefGoogle Scholar
Goldsmith, T.H.Bernard, G.D. 1974. The visual system of insects. In The physiology of Insecta. Edited by M. Rockstein. Academic Press, New York, New York, United States of America. Pp. 166272.Google Scholar
Goyret, J. 2010. Look and touch: multimodal sensory control of flower inspection movements in the nocturnal hawkmoth Manduca sexta. Journal of Experimental Biology, 213: 36763682.CrossRefGoogle ScholarPubMed
Goyret, J.Kelber, A. 2011. How does a diurnal hawkmoth find nectar? Differences in sensory control with a nocturnal relative. Behavioral Ecology, 22: 976984.CrossRefGoogle Scholar
Goyret, J.Kelber, A. 2012. Chromatic signals control proboscis movements during hovering flight in the hummingbird hawkmoth Macroglossum stellatarum. PLoS One, 7: e34529.CrossRefGoogle ScholarPubMed
Horridge, G.A., Giddings, C., Stange, G. 1972. The superposition eye of skipper butterflies. Proceedings of the Royal Society B, 182: 457495.Google Scholar
Horridge, G.A., McLean, M., Stange, G., Lillywhite, P.G. 1977. A diurnal moth superposition eye with high resolution Phalaenoides tristifca (Agaristidae). Proceedings of the Royal Society B, 196: 233250.Google ScholarPubMed
Injac, M.Tosevski, I. 1987. Control of the apple clearwing moth Synanthedon myopaeformis Borkhausen on dwarfing rootstocks of the apple tree. Zastita Bilja, 38: 6776.Google Scholar
Karalius, V.Būda, V. 2007. Colour vision in currant clearwing moth (Synanthedon tipuliformis) (Lepidoptera: Sesiidae). Acta Zoologica Lituanica, 17: 198202.CrossRefGoogle Scholar
Kelber, A. 2005. Alternative use of chromatic and achromatic cues in a hawkmoth. Proceedings of the Royal Society B, 272: 21432147.CrossRefGoogle Scholar
Kelber, A., Vorobyev, M., Osorio, D. 2003. Animal colour vision – behavioural tests and physiological concepts. Biological Reviews, 78: 81118.CrossRefGoogle ScholarPubMed
Kevan, P.G., Giurfa, M., Chittka, L. 1996. Why are there so many and so few white flowers? Trends in Plant Science, 1: 280284.CrossRefGoogle Scholar
Kirchner, S.M., Doring, T.F., Saucke, H. 2005. Evidence for trichromacy in the green peach aphid, Myzus persicae (Sulz.) (Hemiptera: Aphididae). Journal of Insect Physiology, 51: 12551260.CrossRefGoogle ScholarPubMed
Kolb, G.Scherer, C. 1982. Experiments on wavelength specific behavior of Pieris brassicae L. during drumming and egg-laying. Journal of Comparative Physiology A, 149: 325332.CrossRefGoogle Scholar
Land, M.F. 1981. Optics and vision in invertebrates. In Handbook of sensory physiology, Volume 2, part 6B. Edited by H. Autrum. Springer, Berlin, Germany. Pp. 471592.Google Scholar
Lieke, E. 1981. Graded and discrete receptor potentials in the compound eye of the Australian Bulldog-ant (Myrmecia gulosa). Biological Cybernetics, 40: 151156.CrossRefGoogle Scholar
Menzel, R. 1973. Evidence for color receptors in the hymenopteran eye obtained from selective adaptation experiments. Tower International Technomedical Journal of Life Sciences, 3: 95100.Google ScholarPubMed
Menzel, R. 1979. Spectral sensitivity and color vision in invertebrates. In Handbook of sensory physiology, Volume 2, part 6A . Edited by H. Autrum. Springer, Berlin, Germany. Pp. 503580.Google Scholar
Mote, M.Goldsmith, T.H. 1970. Spectral sensitivities of color receptors in the compound eye of the cockroach Periplaneta. Journal of Experimental Zoology, 173: 137145.CrossRefGoogle ScholarPubMed
Mote, M.Wehner, R. 1980. Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bioclor. Journal of Comparative Physiology A, 137: 6371.CrossRefGoogle Scholar
Nilsson, D.-E., Land, M.F., Howard, J. 1988. Optics of the butterfly eye. Journal of Comparative Physiology A, 162: 341366.CrossRefGoogle Scholar
Ômura, H.Honda, K. 2005. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia, 142: 588596.CrossRefGoogle ScholarPubMed
Ômura, H.Honda, K., Hayashi, N. 1999. Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. Journal of Chemical Ecology, 25: 18951906.CrossRefGoogle Scholar
Philip, H. 2006. Apple clearwing moth found in BC. Newsletter of the Entomological Society of British Columbia. Boreus, 26: 20.Google Scholar
Popescu-Gorj, A., Niculescu, E., Alexinschi, AL. 1958. Lepidoptera Familia Aegeriidae. In Fauna Republicii Populare Romîne: Insecta, Volume 11, Fascicula 1. Edited by N. Botnariuc. Editura Academiei Republicii Populare Romîne, Bucharest, Romania. Pp. 1–199.Google Scholar
Rausher, M. 1978. Search image for leaf shape in a butterfly. Science, 200: 10711073.CrossRefGoogle Scholar
Rutowski, R.L.Warrant, E.J. 2002. Visual field structure in the Empress Leilia, Asterocampa leilia (Lepidoptera: Nymphalidae): dimensions and regional variation in acuity. Journal of Comparative Physiology A, 188: 112.CrossRefGoogle ScholarPubMed
SAS Institute 2008. JMP user's guide, version 8. SAS Institute, Cary, North Carolina, United States of America.Google Scholar
Schmitz, H., Schmitz, A., Bleckmann, H. 2000. A new type of infrared organ in the Australian “fire-beetle” Merimna atrata (Coleoptera: Buprestidae). Naturwissenschaften, 87: 542545.CrossRefGoogle ScholarPubMed
Shorey, H.H.Hale, R.L. 1965. Mass-rearing of larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology, 58: 522524.CrossRefGoogle Scholar
Špatenka, K., Gorbunov, O., Laštůvka, Z., Toševski, I., Arita, Y. 1999. Handbook of Palaearctic Macrolepidoptera, Volume 1: Sesiidae – clearwing mothsGem, Wallingford, United Kingdom.Google Scholar
Stavenga, D.G. 2005. Modern optical tools for studying insect eyes. In Methods in insect sensory neuroscience. Edited by T.A. Christensen. CRC Press, Boca Raton, Florida, United States of America. Pp. 159184.Google Scholar
Stüber, R.Dickler, E. 1988. Studies on the biology and behavior of the apple clearwing moth Synanthedon myopaeformis Bork. (Lepidoptera: Sesiidae) as the basis for its control using the confusion technique. Communications from the Federal Biological Institute for Agriculture and Forestry Berlin-Dahlem, 241: 1144.Google Scholar
Takács, S., Bottomley, H., Andreller, I., Zahradnik, T., Schwarz, J., Bennett, R., Strong, W., Gries, G. 2009. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects. Proceedings of the Royal Society B, 276: 649655.CrossRefGoogle ScholarPubMed
Tree of Life Web Project. 2010. Ditrysia. Version 17 November 2010 [online]. Available from http://tolweb.org/Ditrysia/11868/2010.11.17 [accessed 11 April 2012].Google Scholar
Vasconcellos-Neto, J.Monteiro, R.F. 1993. Inspection and evaluation of host plant by the butterfly Mechanitis lysimnia (Nymphalidae: Ithomiinae) before laying eggs: a mechanism to reduce intraspecific competition. Oecologia, 95: 431438.CrossRefGoogle ScholarPubMed
Warrant, E., Bartsch, K., Günther, C. 1999. Physiological optics in the hummingbird hawkmoth: a compound eye without ommatidia. Journal of Experimental Biology, 202: 497511.CrossRefGoogle ScholarPubMed
Warrant, E., Kelber, A., Kristensen, N.P. 2003. Eyes and vision. In Handbuch der Zoologie/Handbook of Zoology IV/36, Lepidoptera, moths and butterflies, Volume 2: morphology, physiology and development. Edited by N.P. Kristensen. Walter de Gruyter, Berlin, Germany. Pp. 325359.Google Scholar
Wehner, R. 1981. Spatial vision in arthropods. In Handbook of sensory physiology, Volume 7, part 6C. Edited by H. Autrum. Springer, Berlin, Germany. Pp. 287616.Google Scholar
Wilson, M. 1978. The functional organization of locust ocelli. Journal of Comparative Physiology A, 124: 297316.CrossRefGoogle Scholar
Yack, J.E., Johnson, S.E., Brown, S.G., Warrant, E.J. 2007. The eyes of Macrosoma sp. (Lepidoptera: Hedyloidea): a nocturnal butterfly with superposition optics. Arthropod Structure and Development, 36: 1122.CrossRefGoogle ScholarPubMed
Yagi, N.Koyama, N. 1963. The compound eye of Lepidoptera: approach from organic Evolution. Maruzen & Co., Tokyo, Japan.Google Scholar
Zahradnik, T. 2012. Exploitation of electromagnetic radiation as a foraging cue by conophagous insects. Ph.D. thesis. Simon Fraser University, Burnaby, British Columbia, Canada. Available from https://theses.lib.sfu.ca/sites/all/files/public_copies/etd7206-t-zahradnik-etd7206-tzahradnikl.pdf [accessed 17 March 2013].Google Scholar
Zhang, B. 1994. Index of economically important Lepidoptera. CAB International, Wallingford, United Kingdom.Google Scholar