Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-07T00:43:37.288Z Has data issue: false hasContentIssue false

EFFECTS OF MITICIDES ON THE LIFE STAGES OF THE EUROPEAN RED MITE, PANONYCHUS ULMI (KOCH) (ACARI: TETRANYCHIDAE)

Published online by Cambridge University Press:  31 May 2012

D.B. Marshall
Affiliation:
Agriculture Canada, Research Station, Vineland Station, Ontario, Canada L0R 2E0
D.J. Pree
Affiliation:
Agriculture Canada, Research Station, Vineland Station, Ontario, Canada L0R 2E0

Abstract

In laboratory tests, many miticides affected more than one life stage of the European red mite but most showed greater toxicity to one specific stage. Most were more toxic to nymphs and adults than to eggs. Cyhexatin was more toxic to nymphs whereas fenbutatin-oxide was more toxic to adults than to nymphs. Propargite, formetanate HCl, and dinocap were more toxic to nymphs than to adults. Dicofol and oxythioquinox were more toxic to adults than to nymphs. Dienochlor was the least toxic miticide tested, and was more toxic to nymphs and adults than to eggs. Amitraz, permethrin, and fenpropathrin were repellent to motile stages at low concentrations, but amitraz was also highly ovicidal. Clofentezine and hexythiazox were toxic to eggs and nymphs but not to adults. Affected nymphs developed into the deutochrysalis or teleiochrysalis stages but were unable to eclose from these quiescent stages.

In field trials, applications timed to coincide with a predominance of sensitive stages were successful. Early season applications suppressed mite numbers for much of the growing season. Populations exhibiting considerable synchrony occurred into August suggesting that susceptible stages could be targeted for control throughout the season.

Résumé

Pendant des épreuves au laboratoire, plusieurs acaricides ont influé sur les stades de vie du tétranyque rouge du pommier, mais la plupart a démontré une plus grande toxicité à un stade spécifique qu’à un autre. La plupart a été toxique aux nymphes et aux adultes qu’aux oeufs. La cyhexatine a été plus toxique aux nymphes qu’aux adultes, alors que l’oxyde de fenbutatine a été plus toxique aux adultes qu’aux nymphes. La propargite, l’hydrochlorure de formétanate, et la dinocap ont été plus toxiques aux nymphes qu’aux adultes. Le dicofol et l’oxythioquinox ont été plus toxiques aux adultes qu’aux nymphes. L’amitraz, la perméthrine et la fenopropathrine en basses concentrations ont repoussé les stades mobiles, mais l’amitraz a agit également comme une forte ovicide. La clofenetezine et l’hexythiazox ont été toxiques aux oeufs et aux nymphes, mais pas aux adultes. Les nymphes atteintes se sont développées au stade deutochrysalide ou téléochrysalide, mais ne pouvaient éclore de ces stades passifs.

Pour les essais au terrain, les arrosages faits pour coïncider avec une prédominance de stades sensibles ont été réussis. L’arrosage de bonne heure à la saison a supprimé le nombre d’acariens pendant une période étendue de la saison de croissance. Les populations démontrant une synchronie considérable ont paru au mois d’août, ce qui a suggéré que les stades susceptibles auraient pu être visés pour la lutte pendant toute la saison.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aveyard, C.S., Peregrine, D.J., and Bryan, K.M.G.. 1986. Biological activity of clofentezine against egg and motile stages of Tetranychid mites. Exp. appl. Acarol. 2: 223232.Google Scholar
Fisher, S.W., and Wrensch, D.L.. 1986. Quantification of biological effectiveness for pesticides against Tetranychus urticae. J. econ. Ent. 79: 14721476.CrossRefGoogle Scholar
Franklin, E.J., and Knowles, C.D.. 1984. Influence of formamidine on two spotted spider mite dispersal behaviour. J. econ. Ent. 77: 318323.CrossRefGoogle Scholar
Gerson, U., and Cohen, E.. 1989. Resurgences of spider mites (Acari: Tetranychidae) induced by synthetic pyrethroids. Exp. appl. Acarol. 6: 2946.Google Scholar
Hagley, E.A.C., Trottier, R., Herne, D.H.C., Hikichi, A., and Maitland, A.. 1980. Pest management in Ontario apple orchards. Research Branch, Can. Dept. Agric. Publ. 1980.Google Scholar
Hall, F.R. 1979. Effects of synthetic pyrethroids on major insect and mite pests of apple. J. econ. Ent. 72: 441446.CrossRefGoogle Scholar
Hardman, J.M. 1989. Model simulating the use of miticides to control European red mite in Nova Scotia apple orchards. J. econ. Ent. 82: 14111422.CrossRefGoogle Scholar
Hardman, J.M., Herbert, H.J., Sanford, K.H., and Hamilton, D.. 1985. Effects of populations of the European red mite, Panonychus ulmi, on the apple variety red Delicious in Nova Scotia. Can. Ent. 117: 12571265.Google Scholar
Herne, D.C. 1971. Methodology for assessing resistance in the European red mite. Proc. 3rd. Int. Congr. of Acarol. Prague. pp. 663667.Google Scholar
Herne, D.C., and Lund, C.J.. 1979. Simulation model of European red mite population dynamics developed for a mini-computer. Can. Ent. 111: 499507.CrossRefGoogle Scholar
Hogmire, H.W., and Crimm, L.. 1986. Apple acaricide evaluations, 1985. p. 27in Insecticide and Acaricide Tests, Vol. 11. Entomological Society of America, College Park, MD.Google Scholar
Hollingworth, R.M., and Lund, A.E.. 1982. Biological and neurotoxic effects of amidine pesticides. pp. 189227in Coats, J.R. (Ed.),Insecticide Mode of Action. Academic Press, Inc., New York, NY.Google Scholar
Iftner, D.C., and Hall, F.R.. 1983. Toxicity of selected synthetic pyrethroids to two species of phytophagous mites. J. econ. Ent. 76: 687689.CrossRefGoogle Scholar
Knowles, C.O. 1982. Structure–activity relationships among amidine acaricides and insecticides. pp. 243277in Coats, J.R. (Ed.), Insecticide Mode of Action. Academic Press, Inc., New York, NY.CrossRefGoogle Scholar
Marshall, D.B., and Pree, D.J.. 1986. Effects of pyrethroid insecticides on eggs and larvae of resistant and susceptible populations of spotted tentiform leafminer. Can. Ent. 118: 11231130.Google Scholar
Marshall, D.B., Pree, D.J., and McGarvey, B.C.. 1988. Effects of benzoylphenylurea insect growth regulators on eggs and larvae of the spotted tentiform leafminer Phyllonorycter blancardella (Fabr.). Can. Ent. 120: 4962.CrossRefGoogle Scholar
Neal, J.W, McIntosh, M.S., and Gott, K.M.. 1986. Toxicity of clofentezine against the two spotted and carmine spider mites. J. econ. Ent. 79: 479483.Google Scholar
Ontario Ministry of Agriculture and Food. 1987. 1987 Pesticide recommendations for greenhouse crops. Ont. Ministry Agric. Food Publ. 365.Google Scholar
Ontario Ministry of Agriculture and Food. 1989. 1989 Fruit production recommendations. Ont. Ministry Agric. Food Publ. 360.Google Scholar
Penman, D.R., and Chapman, R.B.. 1988. Pesticide-induced mite outbreaks: Pyrethroids and spider mites. Exp. appl. Acarol. 4: 265276.CrossRefGoogle Scholar
Pickett, A.D., Patterson, N.A., Stultz, H.T., and Lord, F.T.. 1946. The influence of spray programs on the fauna of apple orchards in Nova Scotia: I. An appraisal of the problem and a method of approach. Sci. Agric. 26: 590600.Google Scholar
Pree, D.J. 1979. Toxicity of phosmet, azinphosmethyl and permethrin to the Oriental fruit moth and its parasite, Macrocentrus ancylivorus. Environ. Ent. 8: 969972.CrossRefGoogle Scholar
Pree, D.J., and Wagner, H.W.. 1987. Occurrence of cyhexatin and dicofol resistance in the European red mite, Panonychus ulmi (Koch) (Acari: Tetranychidae), in southern Ontario. Can. Ent. 119: 287290.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide: Statistics, Version 5 ed. SAS Institute, Cary, NC. pp. 113137.Google Scholar
Streibert, H.P., and Dittrich, V.. 1977. Toxicological response of insect eggs and larvae to a saturated atmosphere of chlordimeform. J. econ. Ent. 70: 5759.CrossRefGoogle Scholar
Welty, C., Reissig, W.H., Dennehy, T.J., and Weires, R.W.. 1988. Susceptibility to hexythiazox of eggs and larvae of European red mite (Acari: Tetranychidae). J. econ. Ent. 81: 586592.CrossRefGoogle Scholar
Welty, C., Reissig, W.H., Dennehy, T.J., and Weires, R.W.. 1989. Activity of clofentezine against European red mite. J. econ. Ent. 82: 197203.CrossRefGoogle Scholar